Final Report on the Research Project "Evaluation of Biocides and Disinfection Procedures for the Effective Sanitation of Potato Storages and Equipment"

0

Alberta Potato Industry Conference Deerfoot Inn & Casino Calgary, Alberta November 21, 2013

R.J. Howard, G.C. Daniels, S.L. Mobbs, D.A. Burke, S.L.I. Lisowski and M.W. Harding Alberta Agriculture and Rural Development Crop Diversification Centre South Brooks, AB

Project Sponsors

- Canadian Horticultural Council, Seed Potato Sub Committee
- Potato Development Association of British Columbia
- Potato Growers of Alberta
- Alberta Agriculture and Rural Development
- Alberta Crop Industry Development Fund
- Saskatchewan Agricultural Development Fund
- Saskatchewan Seed Potato Growers' Association
- Seed Potato Growers Association of Manitoba
- Manitoba Agri-Food Research and Development Initiative
- Potatoes New Brunswick
- Disinfectant and Equipment Companies
- Growing Forward (Agriculture and Agri-Food Canada)
 - Manitoba Agriculture, Food and Rural Initiatives, Winnipeg, MB
 - Peak of the Market, Carman, MB

Outline

- Background to the Project
- Study Objectives
- Design and Methodology
- Summary of Results
- Key Recommendations from the Project

Bacterial Ring Rot of Potato (Clavibacter michiganensis subsp. sepedonicus)

Stages of Biofilm Development

Planktonic

Adhesion to _ surface Formation of _____ monolayer and production of "slime"

Microcolony = formation, with multilayering cells Mature biofilm, with characteristic "mushroom" formed of polysaccharide. Note cells starting to dettach, reverting to planktonic cells and completing the cycle.

Project Objectives

- To identify registered and unregistered chemical disinfectants that are highly effective against *Clavibacter michiganensis* subsp. sepedonicus
- To determine the relative effectiveness of these disinfectants against *Cms* biofilms on the various types of hard surfaces typically found in or on potato storages, machinery and equipment
- To assess whether the effectiveness of disinfectants can be improved by the use of detergents, foaming agents, adjuvants and related products

Project Methodology

- The MBECTM and BESTTM plate assays developed by Innovotech Inc., Edmonton, were the main testing platforms because they facilitated accurate, highthroughput testing of biocides:
 - MBEC = Minimum Biofilm Eradication Concentration
 - BEST = Biofilm Eradication Surface Test
- General protocols followed were the same as were used in previous studies
- Study timeframe: 2008-2011

Project Design

- Stage | Determine optimal growth conditions for *Cms*
- Stage 2 Screen 10 commercial and experimental disinfectants against Cms biofilms using MBECTM assay
- Stage 3 Screen 10 disinfectants against Cms planktonic cells using the MBECTM plate assay
- Stage 4 Determine the efficacy of disinfectants against artificial biofilms of *Cms* on 10 types of surfaces using the BESTTM plate assay
- Stage 5 Determine the efficacy of disinfectants against natural and artificial transferred biofilms of Cms on 10 types of surfaces using the BESTTM plate assay
- Stage 6 Evaluate the best-performing disinfectants and additives against *Cms* biofilms in pilot-scale trials in commercial potato storages

MBEC[™] Assay

MBEC device with 96-peg lid and ridged trough

4) Biofilms formed on pegs

1) Bacterial Inoculum in broth added to trough

3) Biofilm formation under shear force

MBECTM Assay Plate

Coupons of hard surface materials are attached to the lid

Stage I Methodology [Optimization of Experimental Protocols]

- Growth times: 3, 5, 7 and 10 days
- Temperatures: 20, 23 and 26°C
- Growth media: Mueller Hinton Broth (MHB), Nutrient Broth (NB) & Yeast Glucose Broth (YGB)
- Platform: MBECTM assay plate
- Peg materials and coatings:
 - Plastic Poly-L-lysine- and hydroxyapatite-coated
 - Wood Balsa, maple dowel and coffee stir stick
- Cms isolates: RI3, RI4 and Cm3s

Modified MBECTM Assay Plate

Stage I Results

- Growth times: 3, 5, 7 and 10 days
- Temperatures: 20, 23 and 26°C
- Growth media: Mueller Hinton Broth (MHB), Nutrient Broth (NB) & Yeast Glucose Broth (YGB)
- MBECTM plate pegs and coatings:
 - Plastic Poly-L-lysine- and Hydroxyapatite-coated
 - Wood Balsa, maple dowel and stir stick
- Cms isolates: RI3, RI4 and Cm3s

Stage 2 Methodology

[Efficacy of Disinfectants against Cms Biofilms]

- Platform: MBECTM plates with balsa wood and hydroxyapatite-coated plastic pegs
- Disinfectants (10): Bleach, General Storage Disinfectant, SaniDate, Virkon, KleenGrow, Menno Florades, Hyperox, Dutrion, Thymox, and Electolyzed Water (Anostel[®]/CR-7)
- Concentrations: 1/4, 1/2, I and 2X label rates
- Contact Times: 5, 10 and 20 minutes

Stage 2 Results

- There was much more biofilm growth on balsa wood pegs versus hydroxyapatite-coated pegs
- The disinfectants were less effective against biofilms grown on wood versus plastic
- Disinfectant efficacy against biofilms improved with increasing concentration and exposure time
- At the IX rate on balsa pegs, Bleach, Hyperox, Anostel[®]/CR-7, SaniDate, and Virkon achieved 3-log (99.9%) reductions in *Cms* populations or, in some cases, completely eradicated the pathogen

Stage 3 Methodology

[Efficacy of Disinfectants against Cms Planktonic Cells]

- Platform: MBECTM plates containing 24-hour old cultures of *Cms* grown in Yeast Glucose Broth
- Disinfectants (10): Bleach, General Storage Disinfectant, SaniDate, Virkon, KleenGrow, Menno Florades, Hyperox, Dutrion, Thymox, and Electolyzed Water (Anostel[®]/CR-7)
- Concentrations: 1/4, 1/2, I and 2X label rates
- Contact Times: 5, 10 and 20 minutes

Stage 3 Results

- Bleach, General Storage Disinfectant, SaniDate, Virkon, KleenGrow, Hyperox, and Thymox eradicated Cms after as little as 5 minutes of exposure to the ¹/₄X concentration
- Menno Florades required 10 minutes of exposure at the ¹/₄X rate to eradicate Cms
- Dutrion required 10 minutes of exposure at 1X to eradicate Cms
- Anostel[®]/CR-7 at ¹/₄X and ¹/₂X the label rate was unable to achieve a 3-log reduction

Stage 4 Methodology

[Efficacy of Disinfectants on Infested Surfaces]

- Platform: BESTTM plates (12-wells)
- Disinfectants (10): Bleach, General Storage Disinfectant, SaniDate, Virkon, KleenGrow, Menno Florades, Thymox, Dutrion, Thymox, and Anostel[®]/CR-7
- Concentrations: 1/4, 1/2, I and 2X label rates
- Contact Times: 10, 20 and 30 minutes
- Surfaces (II): Mild steel, stainless steel, aluminum, galvanized tin, polyethylene sheeting, adhesivebacked foam, spray-on foam insulation, rubber belting, high density paper, concrete and plywood

Material	Dimensions (mm)	Source
Mild steel	15 x 6 x 1	Seed Cutter
Stainless steel	15 x 6 x 1	Potato washer
Galvanized steel	15 x 6 x 1	Plenums, wall sheeting
Aluminum	15 x 6 x 1	Ventilation fan
Polyethylene	15 x 5 x (8mil)	Vapor barrier
Foam padding	15 x 5 x 5	Conveyor sides, plenum joints
Spray foam insulation	15 x 5 x 5	Walls, ceilings, truck beds
Rubber	15 x 6 x 5	Belting
High density paper	15 x 6 x (1 layer)	Humidicell material
Plywood	15 x 12 x 4	Wall sheeting
Concrete	15 x 5 x 5	Floors, foundations

Stage 4 Results

- Poor biofilm formation occurred on steel (3 types), aluminum, polyethylene, and rubber belting
- Porous materials (wood and foam insulation) were much harder to disinfest than non-porous surfaces (steel, plastic, aluminum and rubber)
- The most effective disinfectants against biofilms on plywood and foam insulation were Bleach, SaniDate, Hyperox and Virkon
- Thymox and Menno Florades were partially effective on plywood and foam padding, but not on foam insulation
- Bleach was the most effective biocide overall
- Dutrion, Anostel[®]/CR-7 and GSD were the least effective biocides

Stage 5 Methodology

[Efficacy of Disinfectants on Transferred Biofilms]

- Platform: BESTTM plates (12-wells)
- Biofilm Sources: Artificial (transferred from 7-dayold YGM plates) and Natural (transferred from BRR infected tubers)
- Biofilm States: Fresh ("wet") and air dried ("dry")
- Disinfectants (10): Bleach, GSD, Hyperox, SaniDate, Virkon, KleenGrow, Menno Florades, Dutrion, Thymox and Anostel[®]/CR-7
- Concentrations: I and 2X label rates
- Contact Times: 20 and 30 minutes
- Surfaces: Concrete and wood

Stage 5 Results

- A source of heavily infected BRR tubers could not be found, so this phase of the study was not carried out
- Artificial transferred biofilms were harder to eradicate compared to those grown *in situ* in BEST plates
- The 2X label rate and 30 minute contact time were significantly more effective than IX and 20 minutes
- Biofilms grown or transferred onto wood coupons were harder to kill than those on cement coupons
- Dry biofilms were harder to eradicate than wet ones
- Top 5 = Bleach, Hyperox, Sanidate, Virkon and Thymox
- Bottom 5 = GSD, Menno Florades, Dutrion, Anostel[®]/CR-7 and KleenGrow

Phase 6 Methodology

[Pilot-Scale Trials in Commercial Potato Storages]

- Testing Platform: PetriFilm for Bacteria and Yeast & Molds
- Disinfectants (11): Bleach, General Storage Disinfectant, SaniDate, Virkon, KleenGrow, Menno Florades, Thymox, Dutrion, Thymox, Anostel[®]/CR-7 and 1-Stroke Environ
- Concentrations: Label rate or optimal rate from lab tests
- Contact Times: 20 minutes
- Also tested Wet Steam
- Surfaces: Galvanized steel, concrete, painted metal sheeting, plastic, spray-on foam and aluminum-clad insulation, stainless steel, unpainted wood and plywood

Stage 6 Methodology

[Pilot-Scale Trials in Commercial Potato Storages]

- Storage locations and numbers of bins tested:
 - Alberta (12)
 - Saskatchewan (3)
 - Manitoba (10)
- Status of the bins:
 - None were infested with Bacterial Ring Rot
 - Emptied out but not cleaned (dirty bins)
 - Emptied out and cleaned
 - Emptied out, cleaned and pressure washed
 - Emptied out, cleaned, pressure washed and disinfected
- Microbial assays for bacteria, yeasts and molds (fungi)

Phase 6 Methodology

[Pilot-Scale Trials in Commercial Potato Storages]

• Detergents tested:

- Carbon-Ate (Hotsy Cleaning Systems)
- Ripper I (Hotsy Cleaning Systems)
- Ripper 2 (Hotsy Cleaning Systems)
- Super XLT (Aaladin Superior Cleaning Products)
- I-Stroke Environ (Steris)
- General Storage Disinfectant (Ag-Services Inc.)
- Applied with a low pressure nozzle
- Surface dwell time = 10-20 minutes
- Residual detergent was pressure washed away
- Sampled before detergent and after pressure washing

Mobile Sanitation Unit

Hotsy Pressure Washer/Steamer

0

MSU Water Tank and Hoses

Commercial Potato Storage, Taber, AB

Preparing to Apply Disinfectants

Typical Surfaces in a Storage

Cleaning with Wet Steam

Applying a Disinfectant

Swabbing a Treated Surface

General Observations

- Storage and equipment sanitization programs are being widely used by potato producers and processors in Western Canada
 - Best management practice (disease control)
 - On-farm food safety or biosecurity programs
- Three key steps are involved:
 - Rough cleaning to remove tubers, vines, soil and dust
 - Pressure washing or hosing down
 - Disinfectant application
- Sometimes, two of these steps are combined

General Observations

- Microbial sampling is not being routinely used as a way to assess the effectiveness of sanitization programs in storages and on equipment
- Detergents are rarely being used during the pressure washing stage
- GSD is the most popular disinfectant and is sometimes used as a cleaner-disinfectant during pressure washing
- Most growers and storage managers are not aware of the availability of other registered disinfectants for BRR control

Stage 6 Results [Pilot-Scale Trials in Commercial Potato Storages]

Stage 6 Results (Taber, AB)

Surface	Bacteria (3-log reduction)	Fungi (3-log reduction)
Concrete floor	Bleach Hyperox	Bleach
Spray-on foam insulation	Bleach Anostel [®] /CR-7	Bleach
Galvanized steel walls	Hyperox Thymox	Bleach Thymox
Galvanized steel plenums	None	None

Stage 6 Results

[Pilot-Scale Trials in Commercial Potato Storages]

- Bacteria were more difficult to eradicate compared to yeasts and molds
- I-Stroke Environ was the best-performing detergent
- Bleach achieved a 3-log reduction in microbial numbers more than any other treatment tested
- Performance of other disinfectants was variable and depended on the kinds of microorganisms being targeted and type of surface being treated
- Wet steam was generally less effective compared to the chemical disinfectants

Key Recommendations

- Three key steps need to be followed for effective sanitization of potato storages and equipment:
 - Rough cleaning
 - Pressure washing, hosing down or compressed air
 - Application of a registered disinfectant
- Select disinfectants based on disease history, storage features, ease of use and potential risks
- Rotate the types of detergents and disinfectants being used to sanitize potato storages to minimize the risk of resistance developing in pathogens and other microbial contaminants

Key Recommendations (Continued)

- Most disinfectants are biocidal and are effective against bacteria, fungi and yeasts
- Three disinfectants are registered in Canada that specifically mention Bacterial Ring Rot and/or *Cms* on the label:
 - General Storage Disinfectant
 - SaniDate Disinfectant
 - I-Stroke Environ Germicidal Detergent
- Equipment, machinery and storage sanitization should be an integral part of an overall potato disease management (biosecurity) program

Contact Information

Ron Howard Research Scientist, Plant Pathology Alberta Agriculture and Rural Development Crop Diversification Centre South 301 Horticultural Station Road East Brooks, AB TIR IE6 Phone 403-362-1328; Fax 403-362-1326 ron.howard@gov.ab.ca