Site Specific Management of Potatoes

AARI Project No. 96M979

R.C. McKenzie, S.A. Woods, C.A. Schaupmeyer, M. Green, T.W. Goddard and D.C. Penney

> Alberta Agriculture, Food and Rural Development Crop Diversification Centre South SS 4, Brooks, AB T1R 1E6

> > January 2003

INTRODUCTION	. 1
OBJECTIVES	. 3
DEVIATIONS FROM OBJECTIVES	. 3
Soil Salinity	
RESEARCH DESIGN AND METHODS	. 4
Fields Monitored	
Soil Moisture and Water Tables	
Fertilizer and Soils	
Fertilizer Treatments	
Tissue Samples	
Pest Monitoring	
Remote Sensing	
Tuber Samples	
Global Positioning Systems and Yield Monitoring	
Soil Salinity	
RESULTS AND DISCUSSION	16
Soil Moisture, Water Tables and Yields	
Soil Fertility	
Nitrogen	
Phosphorus	
Potassium	
Petiole Analysis	
Nitrate N	. 23
Phosphorus	. 24
Potassium	. 25
Fertilizer Treatments	26
Pest Monitoring	
Weeds	
Disease	
Insects	
Remote Sensing	
Nitrogen	
Fincastle Site	
Hays Site	
Summary	
CONCLUSIONS	
	,
FIGURES	. 38

Table of Contents

IMPLICATIONS OF THE STUDY WITH REGARD TO THE IMPROVE	MENT
OF ALBERTA'S AGRICULTURAL AND FOOD INDUSTRY AND	
ADVANCEMENT OF AGRICULTURAL KNOWLEDGE	54
ACKNOWLEDGEMENTS	55
REFERENCES	56
PUBLICATIONS ARISING FROM THIS RESEARCH	60
APPENDICES	62
I. 1996 Fincastle Grid Sample Data	63
II. 1996 Hays Grid Sample Data	64
III. 1997 Fincastle Grid Sample Data	65
IV. 1997 Hays Grid Sample Data	
V. 1998 Fincastle Grid Sample Data	
VI. 1998 Hays Grid Sample Data	68
VII. 1999 Fincastle Grid Sample Data	
VIII. 1999 Hays Grid Sample Data	
IX. 1999 Vauxhall Grid Sample Data	71
X. Estimating Potato Petiole Nitrate Nitrogen Using Remote Sensing Tech	
by Anne M. Smith	-

List of Figures

Figure 1.	Sampling grid for yield, petioles, water and soil samples for Snowden potatoes grown at Hays in 1997
Figure 2.	Soil texture maps of Hays 1996 (a and b) and Fincastle 1999 (c and d) fields for two soil depths 0.0-0.60 m and 0.60-0.90 m
Figure 3.	Change of sprinkler design causing contrasting distribution of irrigation and preciptation at Hays in (a) 1997 west and (b) 1996 east40
Figure 4.	Percent of available moisture (100% = filed capacity) in 1996 at Hays for (a) 0.0- 0.50 m and (b) 0.50-1.00 m
Figure 5.	Correlation between total potato yield and total added water (irrigation + precipitation) at (a)Hays 1998 and (b)Fincastle 1999
Figure 6.	Correlation between mean tuber weight and total added water (irrigation + precipitation) at (a)Hays 1998 and (b)Hays 1997
Figure 7.	Soil NO ₃ -N at piezometer sites from 1997 at Hays43
Figure 8.	Soil NO ₃ -N levels at piezometer sites from 1997 at Fincastle
Figure 9.	Soil PO ₄ -P at piezometer sites from 1997 at Hays45
Figure 10.	Soil PO ₄ -P at piezometer sites from 1997 at Fincastle46
Figure 11.	Correlation between potato petiole NO ₃ -N and (a) soil NO ₃ -N for Hays 1999 and (b) soil NO ₃ -N, (c) soil clay and (d, e and f) total yield for Fincastle and Hays potatoes 1997-1999
Figure 12.	Fincastle (a) soil PO ₄ -P (October 1998, 0.00-0.15 m) and (b) petiole P (July 28, 1999) for a field which was partially fertilized with hog manure October 199748
Figure 13.	Petiole P levels at Hays (July 1998) showing rapid decline of petiole P from (a) July 3 to (b) July 23, 1997
Figure 14.	Correlation between potato petiole P and (a) soil PO ₄ -P, (b) soil clay and (c, d and e) total yield for 3 sampling dates at Hays and Fincastle for 1997-199949
Figure 15.	Petiole potassium showing an increase of percent K from (a) July 7, 1997 to (b) July 24, 1997 at Fincastle
Figure 16.	Petiole potassium showing a slight decrease of percent K from (a) July 9, 1999 to (b) August 13, 1999 at Fincastle
Figure 17.	True colour composite images acquired July 28, 1999 at the (a) Fincastle and (b) Hays sites

Figure 18.	Fincastle site SR _{550_850} index image and petiole N map (July 28, 1999) derived from ground-based sampling
Figure 19.	Hays site SR _{550_850} index image and petiole N map (July 30, 1999) derived from ground-based sampling
Figure 20.	Soil salinity map (E.C. dS/m) for Vauxhall potatoes, April 199953
Figure 21.	The effect of soil salinity on (a) tuber yield and (b) tuber specific gravity for Vauxhall potatoes 199953

List of Tables

Table 1.	Legal location and legal description of potato fields monitored and date first irrigated	5
Table 2.	Sampling sites, irrigation systems, field size and variety of potatoes grown	6
Table 3.	Farmers' soil fertility (N, P and K) before fertilization and N, P and K fertilizers applied and depth of soil samples (kg/ha)	7-8
Table 4.	Soil analysis done for the site specific potato project	9
Table 5.	Nutrients (N, P and K) in kg/ha applied on fertilizer strips in 1997	.10
Table 6.	Nutrients (kg/ha) applied in 1998 on fertilizer strips in excess of farmers rate to Hays and Fincastle fields	.10
Table 7.	Fertilizer treatments at Hays in 1999	.10
Table 8.	Petiole analysis volume and parameters	.13
Table 9.	Potato petiole nutrient sufficiency levels from three soil/plant analysis labs and levels found in this project	.14
Table 10.	GPS applications 1996-1999	.15
Table 11.	Soil nitrogen levels in ppm N (0.0-0.60 m depth) in October of the previous year for grid sample sites grouped by % according to Alberta Agriculture standards	.21
Table 12.	Soil phosphorus levels in ppm P (0.0-0.15 m depth) in October of the previous year for grid sample sites grouped by % according to Alberta Agriculture standards	.21
Table 13.	Soil potassium levels in ppm K (0.0-0.15 m depth) in October of the previous year for grid sample sites grouped by % according to Alberta Agriculture standards	.21
Table 14.	Petiole analysis of N, P and K for 1996-99 for 3 dates for potatoes at Hays and Fincastle showing % of samples at adequate level	.22
Table 15.	1997 potato yields (t/ha) and gross value on fertilizer strips	.26
Table 16.	1998 potato yields (t/ha) and gross value on fertilizer strips	.27

Table 17.	Effect of P, compost and manure on tuber yield and size and disease incidence of potatoes – Hays, 1999
Table 18.	Published algorithms for chlorophyll/N estimation using remote sensing data31
Table 19.	Input parameters for the FLAASH atmospheric correction model
Table 20.	Relationship between the various proposed indices and petiole nitrate N samples .34

ABSTRACT

Potato crops have many characteristics that make them suitable for precision agriculture, such as a high value with costly inputs of pesticides, fertilizer and water. The application of fertilizer and pesticides on potatoes may cause environmental problems and the risks of these can be reduced by using precision farming techniques. This potential for use of precision agriculture technology has not been exploited to any great extent because problems exist which have not been fully resolved. Between 1996 and 1999 a project on the site specific management (or precision farming) of potatoes was undertaken. The goals of the project were to utilize yield monitoring and global positioning technology to generate maps and to measure the variability of the yield of potatoes in a field; to determine the effect of soil type, landscape position, nutrient level, fertility treatments, disease and weeds on the yield of potatoes; to determine yield and quality; to evaluate the use of remote sensing and digital image analysis to detect nutrient deficiencies and diseases of potatoes; to measure the financial and environmental benefits of site specific management of potatoes; and to measure the movement of nitrogen below the root zone.

A yield monitor was successfully adapted to two farmers' potato harvesters and used to map tuber yields. Difficulties were encountered on parts of fields where soil lumps occurred, usually on areas with a high clay content. Yield maps were also developed from grid sampling. These grid samples were used to determine tuber yield, average tuber size and tuber quality as measured by specific gravity, chipping score and French fry score. Uniformity of irrigation affected tuber size. No relationship was found between chipping and French fry score and the measured factors of soil or water in the field. Grid sampling of the fields also showed variability in soil texture, which was correlated to various soil and plant chemical properties.

Two of six fields had sufficient variability of soil nitrogen to justify the cost of soil sampling and variable rate application. However, petiole NO₃-N in the first week of July was significantly negatively related to 0.0-0.60 m depth of soil clay and was not significantly related to soil NO₃-N. This means it would be more useful for farmers on these fields to base a site specific nitrogen application on soil clay content than on soil NO₃-N content. Soil P was significantly positively correlated to petiole P content but not clay content. Opportunities exist for precision applications of phosphorus particularly on two of the fields that had a history of receiving non-uniform applications of manure. However, phosphorus fertilizer applications based on grid sampling of soil phosphorus should provide some improvement in efficiency of uptake of phosphorus. Potassium levels in the soil from 1997 to 1999 were marginal to adequate on most grid sample sites. In 1997 and 1998 petiole K levels were deficient in the first week of July but became adequate to high in two later samplings. The reason for this is not known. It may be due to lower soil temperatures in early July restricting uptake, rather than the higher soil temperatures in the USA where the standards for petiole K were developed. There is a need to develop local standards for petiole K levels.

Precision fertilizer application is practiced on some potato farms in Canada, but the use of this technology is limited by the cost of soil sampling and analysis to accurately describe the field. If precision agriculture technology is to have widespread adoption in the potato industry, solutions to the obstacles of cost, soil lumps and other problems need to be incorporated into the technology.

INTRODUCTION

Since 1991, Global Positioning System (GPS) technology and yield monitoring equipment has made it possible to develop detailed yield maps of various crops. Farmers in the USA, Canada and Australia are interested in GPS as a means to increase profits by optimizing fertilizer applications. In western Europe, GPS has been used to avoid environmental contamination from excess application of fertilizers and manure. Other computer technology makes it possible to overlay maps of yields, soil or crops and measure relationships between them.

Since 1994, site specific management of cereal and oilseed crops in Alberta has increased steadily. Today, about 300 farmers in Alberta use yield monitors and some of these prepare yield maps of their fields. Site specific management of inputs can be done in a detailed or in a general manner by dividing the field into a few categories (Bouma et. al., 1995). Variable rate inputs can be applied with the assistance of GPS by a programmable fertilizer or herbicide applicator. Prototype irrigation systems have been developed to apply variable rates of water. (King et. al., 1995).

Potatoes are a high value crop requiring a lot of inputs, such as fertilizer, pesticides and irrigation. Potatoes are often grown on coarse textured soils that have low nutrient holding capacity and are high in field variability. Excess nitrogen can delay maturity of the crop and contribute to groundwater contamination. With the use of site specific management zones, with soil texture as a variable, the contamination of water can be reduced (Delgado and Duke, 2000; Whitley et. al., 2000). Insufficient nitrogen will reduce yield and increase the severity of early blight in potatoes. Phosphorus fertilizer applications for potatoes are higher than other crops, which represents an appreciable cost to farmers who are often growing potatoes on rented land. High phosphorus application may cause excess soil phosphorus, the major agricultural factor that contributes to water contamination. This results in the rapid growth and decay of algae in lakes, streams and rivers causing eutrophication and fish death. Recommendations for phosphorus requirements of potatoes by Tindall et. al. (1991) exceed those measured in a precision agriculture experiment by Davenport et. al. (1999). Traditional research under small plot conditions does not account for field variability and is usually conducted on uniform sites. The production of irrigated potatoes in southern Alberta has increased from about 9,000 ha in 1992 to

1

18,000 ha in 2000 and further increases are expected. If potatoes are grown in a one crop per four years rotation, 72,000 ha will be required or more than 13% of the irrigated land in Alberta. This expansion means fields are being used which are less than optimum for potato production.

Potato processors are concerned about uniform quality of tubers. By controlling storage conditions, processors can alter the sugar content of a storage bin of potatoes to an optimum level for processing. However, this is difficult in a storage bin of potatoes where the original quality is not uniform. For processing, the size and shape of tubers are important. As well, a high specific gravity in potatoes means there is more dry matter for making chips or French fries and the tubers will store well. However, two producers of French fries have encountered problems with some Alberta tubers having excessively high specific gravities, which interfered with processing. Other factors that are detrimental are the presence of disease or hollow heart.

Potato fields are closely monitored during the growing season. Many growers sample leaf petioles and monitor each field on a weekly or biweekly basis for nitrogen nutrition. During the growing season when required, fertilizers are added by fertigation or pesticides are applied to control diseases, insects or weeds. Most observations are based upon repeated sampling of a specific area within the field. The area sampled may only be representative of a portion of the field. Growers need to have some idea of the variability within a field when applying inputs to the field (King et. al., 1999; Verhagen, 1997).

A yield monitor for potatoes consisting of load cells mounted under the harvester belt was first built by Harvestmaster (Campbell, 1999) and tested by the USDA near Prosser, Washington in 1995 (Rawlins et. al., 1995; Schneider et. al., 1997). The harvester position in the field was continually located by means of a differential global positioning system. C. McKenzie and M. Green observed these tests and concluded it merited evaluation on Alberta fields as a means to measure tuber yield and correlate this to soil and crop conditions. Since that time, other yield monitors have been developed consisting of load cells on a weigh wagon (Godwin et. al., 1999) or with a camera and computer to identify tubers from other irregular objects (Wooten et. al., 2000).

2

OBJECTIVES

- 1. To use a potato harvester equipped with a yield monitor and global positioning technology to generate maps and to measure the variability of the yield of potatoes in a field;
- **2.** To determine the effect of soil type, landscape position, nutrient level, fertility treatments, disease and weeds on the yield of potatoes;
- **3.** To determine yield and variability of crops over several years and relate this to field characteristics and to potato yield and quality;
- **4.** To evaluate the use of remote sensing and digital image analysis to detect nutrient deficiencies and diseases of potatoes;
- 5. To measure the financial and environmental benefits of site specific management of potatoes;
- 6. To measure the movement of nitrogen below the root zone.

DEVIATIONS FROM OBJECTIVES

Remote sensing data with spectral analysis was obtained in the first year (1996) of the project on one field at Hays and in the fourth year (1999) at Hays and Fincastle. In 1997 and 1998 false color infrared imagery data was obtained on two fields. This type of infrared imagery was not useful for detailed analysis. In 1998 satellite multispectral imagery was obtained from Resource 21 and it was not feasible to do detailed analysis.

Yield of potatoes and yields of the previous crops on these fields was only obtained on two fields in 1997. Some of the other crops were sugarbeets for which a yield monitor was not available. Some of the grain was harvested with an older model combine, which was not suitable for attaching a yield monitor. Some grain fields were harvested with a custom operator who was not agreed upon until commencement of harvest. This did not provide an opportunity to install a yield monitor, so these fields were not monitored.

Nitrogen movement below the root zone was difficult to distinguish from residual nitrogen, which was also present in the till parent material. Only estimates of nitrogen movement through the soil profiles could be made. In 1999, at the Hays site, treatments of compost and manure were applied in strips, to determine whether or not they would affect the incidence of *Rhizoctonia* and scab on tuber surfaces.

Soil Salinity

Using Global Positioning techniques (Cannon et. al., 1994), soil salinity was mapped on a field with an EM38 meter (McKenzie et. al., 1989) in order to compare growth of potatoes to soil salinity (McKenzie et. al., 1997). This method would evaluate the potential of mapping a field for soil salinity and limiting planting of potatoes only on those areas with less than a critical salinity level. A salt tolerant crop could be planted on the remainder of the field. This objective was not included in the original objectives.

RESEARCH DESIGN AND METHODS

Fields Monitored

In April 1996, two cooperating farmers were selected who agreed to provide one potato field each year for four years. Each irrigated field consisted of half a center pivot or 27 to 31 ha. The farmers were using a three-year rotation. This meant in the fourth year the project would return to the field monitored in the first year. The fields for one farm were located about 12 to 13 km south of Hays, Alberta, and fields for the other farm were from 3 to 10 km north of Fincastle, Alberta.

The legal location, soil type, number of grid sampling points, type of irrigation system and variety of potatoes grown for the fields monitored are given in Table 1. A sampling grid was set up on each field (Fig. 1). In 1996, this grid was established in the spring after seeding of potatoes. In 1996, the single soil samples taken were used to determine soil texture and water holding capacity. In the next three years, the grid was established in the fall of the preceding year with a set of composite soil samples from about 12 cores taken before fertilizer was applied. These samples (Table 2) were used to determine texture, water holding capacity and soil fertility. The grid sampling points were located with differential GPS.

The choice of potato cultivars and field practices were left up to the individual farmer cooperators. Field practices and cultivars can be considered as typical for irrigated potato

production in southern Alberta. The cultivars Snowden and Frito Lay 1625 are both chipping types while the Russet Burbank are fryers (Table 2). They are all considered as "late" varieties. Farmer experiences are that Russet Burbank have demonstrated better response to higher nitrogen fertilizer applications thus, they are fertilized more heavily. Frito Lay 1625 are also noted for their extensive rooting (vertical and horizontal) so they may be able to better exploit soil fertility. Farmers used their normal methods of seeding, cultivation, irrigation, pest control and harvest of their potato fields. The farmers' fertilizer applications are given in Table 3. Soil nitrogen, phosphorus, potassium values in 1996 were obtained from the farmers' records and in 1997, 1998 and 1999 were obtained from the grid samples (Table 4) and from the farmers' or fertilizer company's records. Soil phosphorus was determined by the Kelowna method (Van Lorop, 1988) and soil potassium was determined by the Kelowna method (Van Lorop, 1988), which gives lower values than the ammonium acetate method.

Table 1. Legal location and legal description of potato fields monitored and date first irrigated.				
	First Pivot			Pivot
Year/Site	Legal Land Location	Soil Type	Irrigated	Irrigated
1996				
Hays	E ¹ / ₂ NE 9 12 14 W of 4	from 0-120 cm	1978	1994
		Aeolian loamy sand overlying fine		
		lacustrine till		
Fincastle	E ¹ / ₂ NW 7 11 14 W of 4	Chin light loam	1956	1984
		Fluvial lacustrine		
1997				
Hays	W ¹ / ₂ NE 9 12 14 W of 4	from 0-120 cm	1978	1994*
		Aeolian loamy sand overlying fine		
		lacustrine till		
Fincastle	W ¹ / ₂ NW 27 10 15 W of 4	Cavendish loamy sand and dune sand	1956	1987
1998				
Hays	W ¹ / ₂ SE 9 12 14 W of 4	from 10-120 cm	1978	1994*
		Aeolian loamy sand overlying fine lacustrine till		
Fincastle	E ¹ / ₂ NW 27 10 15 W of 4	Cavendish loamy sand and dune sand	1956	1987
	E ¹ / ₂ SW 34 10 15 W of 4			
1999				
Hays	E ¹ / ₂ NE 9 12 14 W of 4	from 10-120 cm	1978	1994*
		Aeolian loamy sand overlying fine		
		lacustrine till		
Fincastle	E ¹ / ₂ NW 7 11 14 W of 4	Chin light loam	1956	1984
		Fluvial lacustrine		
Vauxhall	S ¹ /2 SW 5 13 6 W of 4	Clay loam to loam overlying	1921	1995
	E ¹ / ₂ 5 13 6 W of 4	Clay loam to clay till at about 1 m		

* pivot converted from high pressure to low pressure in 1997

Table 2. Sampling sites, irrigation systems, field size and variety of potatoes grown.				
X 7 (0),	# of grid	Type of pivot	Field area	Cultivar of
Year/Site	sampling sites	Irrigation system	(ha)	Potatoes
1996				
Hays	40	High pressure	28	Snowden
Fincastle	8	High pressure corner	30	Frito Lay 1625
1997				
Hays	47	Low pressure	29	Snowden
Fincastle	53	High pressure corner	31	Russet Burbank
1998				
Hays	48	Low pressure	29	Snowden and others
Fincastle	63	High pressure corner	30	Russet Burbank
1999				
Hays	53	Low pressure	28	Snowden
Fincastle	51	High pressure corner	31	Frito-Lay 1625
Vauxhall	33	2 low pressure	115	Russet Burbank

Soil Moisture and Water Tables

Alberta Agriculture Food and Rural Development (AAFRD) Irrigation Branch staff from Taber and Brooks monitored soil water at each of the grid sampling points with a neutron probe. Soil moisture was determined to a depth of 1.0 m. Available moisture limits were calculated from particle size data according to Oostervelt and Chang (1980). A rain gauge was installed at each sampling point and rainfall and irrigation measurements were made approximately biweekly.

In 1997 and 1998 the groundwater was measured with 3 to 6 piezometer nests in each field (Rodvang, 1998 and 1999). The goal was to characterize groundwater flow and chemistry on the sites and determine whether agricultural nitrate occurred in the groundwater. Soil samples were collected during drilling and groundwater samples were collected during the season.

Fertilizer and Soils

Soil available nitrogen (N), phosphorus (P), and potassium (K) and soil pH maps were made for the 1997, 1998 and 1999 fields based on data collected the previous October from the sampling grid (Table 4). Soil texture maps were made from all fields based on grid samples (Fig. 2), which were used to develop relationships between texture and nutrient availability. In 1999, at Fincastle and Hays, soil calcium carbonate levels were determined and used to prepare maps at both sites.

Fertilizer Treatments

In 1997, 1998 and 1999, strip fertility experiments were set out. In 1997, the treatments (Table 5) applied were centered around the N2 treatment (farmer rate) (Table 3). Each strip was 8 rows or 6.7 m wide on the Snowden field and 8 rows or 7.3 m wide on the Russet Burbank field. In 1998, the fertilizer strips were in addition to the farmers' fertilizer rates (Table 6). Each strip was 6 rows wide or 5.03 m at Hays and 5.49 m at Fincastle. This represented one pass of the potato harvester. Yields were acquired and positioned on the fertilizer strips in 1997 and 1998 with GPS and a yield monitor on the farmers' potato harvesters.

In 1999, fertilizer plots were set out at Hays. Each plot was 12 rows or 10.1 m wide by 400 m long and was replicated twice. Compost manure and fertilizer treatments (Table 7) were broadcast on the plots in October of 1998. The plots were not fertilized by the farmer, except for 41 kg/ha N at seeding and a fertigation application of 50 kg/ha N during the growing season. The potatoes were hilled and seeded by the farmer in April of 1999. Snowden potatoes were grown and the field was fertigated (Table 3) and irrigated similar to the remainder of the field. Counts of visibly diseased plants on 600 m rows in each treatment were made in August of 1999.

Table	Table 3. Farmers' soil fertility (N, P and K) before fertilization and N, P and K fertilizers applied and depth of soil samples (kg/ha).		
		Hays (kg/ha)	Fincastle (kg/ha)
1996	Soil N Fall 95 [?]	(29) 0.0-0.30 m	(73) 0.0-0.60 m
	Fertilizer N prior to seeding	120	59
	Banded N at hilling	34	0
	Fertigated N	58	11
	Total N	241	144
	Soil P	(35) 0.0-0.30 m	(67) 0.0-0.30 m
	Fert P	48	32
	Total P	83	99
	Total K not available		
1997	Soil N 0.0-0.60 m	37	67 (52)
	Fert N Fall 96	90	0
	Banded N at hilling	39	179
	Fertigated N	88	41
	Total N	254	287

	and depth of soil samples (kg/ha)		
		Hays (kg/ha)	Fincastle (kg/ha)
	Soil P 0.0-0.15 m	24	196
	0.0-0.30 m		
	Fert P Fall 96	59	0
	Fert P Spring 97	0	7
	6 fertigations	22	
	Total P 0.0-0.15 m	195	203
	Soil K 0.0-0.30 m	685	1066 (1935)
	Fert K Fall 96	56	0
	Fert K Spring 97	0	46
	Total K	741	1112
1998	Soil N 0.0-0.60 m	28	32
	Fertilizer N Fall 97	179	190
	N at seeding	0	20
	N at hilling	47	35
	6 fertigations	50	31
	Total N	304	308
	Soil P 0.0-0.15 m	41	67
	Fertilizer P Fall 97	58	46
	Fertilizer P at seeding		29
	Total P	99	142
	Soil Kelowna K	591	627
	0.0-0.15 m		
	Fertilizer K Fall 97	74	74
	Total K	665	701
999	Soil N 0.0-0.60 m	38	90
	Fertilizer N Fall 98	157	112
	Fertilizer N at hilling	41	20
	Fertigations of N	50	30
	Total N	286	252
	Soil P 0.0-0.15 m	47	93
	0.0-0.30 m	71	127
	Fert P Fall 98	59	39
	Fert P Spring	0	29
	Total 0.0-0.15 Soil P	106	161
	Soil K 0.0-0.30 m	757	733
	Fertilizer K Fall 98	56	56
	Fertilizer K Spring	0	0
	Total K	813	789

Table 3. Farmers' soil fertility (N, P and K) before fertilization and N	, P and K fertilizers applied
and depth of soil samples (kg/ha).	

 $^{\rm ?}\,$ () soil nutrient values supplied by the farmer from his soil sampling

Table 4. Soil a	nalys	is do	ne for	the s	ite specific po	tato	project.											
Year	Sand (%)	Silt (%)	Clay (%)	NO ₃ -N (ppm)	NH4-N (ppm)	Miller Axley PO ₄ -P(ppm)	Kelowna PO4-P (ppm)	Ammon Acetate K (ppm)	Kelowna K (ppm)	Hq	2:1 extract E.C. (dS/m)	Zn (ppm)	Cu (ppm)	Mn (ppm)	Fe (ppm)	Na (ppm)	CaO ₃ (ppm)	S (ppm)
1996 sampled May 26 0.0-0.90 m	Ť	Ť	Ť	-	-	-	-	-	-	-	-	-				-	-	-
1997 sampled Oct.96 0.0-0.90m	Ť	Ť	Ť	Ť	1/6 of profiles	Ť	0.0-0.15 m 0.15-0.30 m		0.0-0.15 m 0.15-0.30 m	Ť	Ť	1/6 o samp	f 0.0-0 les	0.15 n	n		Hays	
1998 sampled Oct. 97 0.0-0.90m	Ť	Ť	Ť	Ť	Ť	Ť	0.0-0.15 m 0.15-0.30 m		0.0-0.15 m 0.15-0.30 m	Ť	Ť	0/0-0	.15 m					
1999 sampled Oct. 98 0.0-0.90 m	Ť	Ť	Ť	Ť	Ť	Ť	0.0-0.15 m 0.15-0.30 m	Ť	0.0-0.15 m 0.15-0.30 m	Ť	Ť	0.0-0	.15 m			Ť	0.015 0.15-0.30	Ť

† all samples analyzed

Samples were dug from each treatment and treatment yields were determined using a yield monitor and GPS on the farmer's harvester. Disease counts of the amount (%) of tuber surfaces infected with scab and *Rhizoctonia* were determined on 160 tubers from each treatment. Occurrence of disease was not significantly different between treatments so this data is not reported.

Table 5. Nutrients (N, P and K) in kg/ha applied on fertilizer strips in 1997.										
	H	ays	Fincastle							
Treatment	Ν	Р	K	Ν	Р	K				
N1	30	59	50	53	6	41				
N2	92	59	50	176	6	41				
N3	182	59	50	311	6	41				

Table 6. Nutrients (kg/ha) applied in 1998 on fertilizer strips in excess of farmers rate to Hays and Fincastle fields.								
Treatment N P								
Ν	67	0						
Р	0	32						
NP	67	32						
Check	0	0						

		Nutrients kg/ha			
Treatment	T/ha	Ν	Р	K	
High compost	18.1	199	84	174	
Low compost	9.8	107	45	94	
High manure	26.8	158	82	216	
Low manure	12.8	75	39	103	
High phosphorus		90	58	0	
Low phosphorus		90	20	0	

Tissue Samples

Each field was tissue sampled three times at each of the grid points (early July, late July and the second or third week of August). Tissue samples consisted of 45 to 70 petioles taken from the fourth leaf of plants within 5 m of the grid sampling points. All the tissue samples were analyzed to determine NO₃ N, total N, P, Ca and moisture. In 1996 and 1997, 24% of the samples, and in 1998 and 1999, all the samples, were analyzed to determine K, S, Zn, B, Mn, Fe, Mg, Al, Cu, Na (Table 8). These tissue levels were compared to sufficiency limits (Table 9) based on limits used by various Alberta and USA soils laboratories.

Pest Monitoring

Diseases were monitored by walking the fields. Some areas of the Hays fields received excess water and developed water-induced rot of tubers. These areas were not harvested. In 1999 fertilizer, compost and manure treatments were set out as strips on the Hays field. Disease counts were made on two rows from the three 50 meter long strips from each of the two replicates of the treatments. The 1999 Vauxhall and Fincastle fields had very little disease on all fertilizer treatments so no disease counts were made in these fields.

In 1996 to 1998 weeds in all fields were widely dispersed and not clustered so they were not mapped with GPS or remote sensing techniques. In 1999 dense areas of Canada Thistle (*Cirsium arvense*) occurred on the Hays field. The perimeters of some of these GPS areas were mapped with differential GPS, by walking with a backpack unit obtaining correction data from a base station at the edge of the field. These areas were then located on the CASI images of the field.

Remote Sensing

In July 1996, Itres, a commercial remote sensing firm, collected airborne compact spectographic imager (CASI) data on the Hays potato field. Alberta Environment took color infrared photos at a scale of 1:5,000 and 1:10,000 on July 14, 1997, at Hays and Fincastle; July 23, 1998 at Hays and Fincastle and July 23, 1999 at Hays, Fincastle and 1:15,000 photos at Vauxhall. On July 28, 1999, CASI data were taken of the Hays, Fincastle and Vauxhall potato fields by Itres. GPS positions of ground control points were taken and used to prepare georeferenced images.

Tuber Samples

In 1997, 1998 and 1999, two samples were hand dug near each grid point prior to harvest. Each hand sample consisted of four uniformly spaced plants in 1.22 m of row. The farmer at Fincastle used 0.91 m row spacing between rows and the farmer at Hays used 0.84 m spacing between rows. In addition, in 1999, four samples were hand dug from each replicate of each fertilizer treatment.

The potato samples were washed, graded into size categories and weighed to determine yield. Scab and *Rhizoctonia* scores were made on 20 tubers from each sample from Hays in 1998 and both Hays and Fincastle in 1999. Samples were chipped and chipping quality color scores were done on the Hays tuber samples in 1997, 1998 and 1999. Samples were French fried and French fry quality, color and texture scores were done on the Fincastle tuber samples in 1997, 1998 and 1999.

Global Positioning Systems and Yield Monitoring

Global positioning techniques were used to locate points on the grid for sampling tubers (Table 10). At harvest, the potato fields were mapped using a NovAtel GPS and a Harvestmaster yield monitor mounted on the farmer's potato harvester (Campbell, 1999). The NovAtel RT-20 DGPS delivered accuracies of 0.20 m horizontal and 0.30 m vertical. A topographic map was prepared at the same time as the yield map. In 1997, wheat and barley fields were yield mapped using an Ag Leader yield monitor coupled to an Omnistar receiver, with real-time differential corrections from a geostationary satellite service. This system provided accuracies of 0.5 to 1.0 m horizontal and 1.0 to 2.0 m vertical. The Omnistar information was not suitable to use to prepare topographic maps because of the lack of accuracy in the vertical axis.

Soil Salinity

The site at Vauxhall was chosen in 1999 because it contained a range of soil salinity. Potatoes are considered to be moderately sensitive to salinity. In April, prior to seeding the potatoes, the soil salinity in the field was mapped by towing an EM38 salinity meter behind an all-terrain vehicle and positioning it with GPS technology (Cannon et. al., 1994). On July 28 and September 1, 1999, Itres flew over the field and collected CASI data. In late September, 58 points were selected to represent different levels of soil salinity. At each of these sample points, salinity was determined with an EM38 according to McKenzie et. al. (1989). Tuber samples consisting of two 1.22 m lengths of row each with four uniformly spaced plants, were dug at these sampling points. A regression analysis was developed between tuber yields, tuber specific gravity and soil salinity. The CASI imagery was compared to the salinity map.

Table	8. Petiole a	nalysis	volume a	nd paran	neters.													
		S	ampling d	late						A	nalysis	3						
Year	Location	1 st	2nd	3rd	Moisture	Ν	Ca	Р	NO ₃ N	K	S	Zn	В	Fe	Mg	Al	Ca	Na
1996	Hays	July 3	July 30	Aug. 20	Ť	Ť	Ť	Ť	Ť		?	?	?	?	?	?	?	?
	Fincastle	July 4	July 30	Aug. 20	Ť	Ť	Ť	Ť	Ť		?	?	?	?	?	?	?	?
1997	Hays	July 3	July 23	Aug. 12	Ť	Ť	Ť	Ť	Ť	Ť	?	?	?	?	?	?	?	?
	Fincastle	July 7	July 24	Aug. 13	Ť	Ť	Ť	Ť	Ť	Ť	?	?	?	?	?	?	?	?
1998	Hays	July 6	July 22	Aug. 10	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
	Fincastle	July 7	July 23	Aug. 11	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
1999	Hays	July 7	July 30	Aug. 17	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
	Fincastle	July 9	July 28	Aug. 13	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
	Vauxhall	July 6	July 27	Aug. 11	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť

all samples analyzed1/5 of samples were analyzed

	Stage/or time after emergence	N0 ₃ -N (%)	P (%)	K (%)
Lab A			-	
	Vegetative	1.2-1.5	03.0-04.0	7.0-8.0
	Tuber initiation	1.2-1.5	0.25-0.35	7.0-8.0
	Tuber bulking	1.2-1.5	0.25-0.30	6.5-7.5
	Tuber half grown	1.0-1.5	0.20-0.25	6.0-7.0
	Tuber maturing	0.5-1.0	0.15-0.20	3.0-5.0
Lab B				•
	+3 weeks	2.5-3.0	0.24-0.44	11.8-13.8
	+9 weeks	1.8-2.3	0.20-0.40	9.8-11.8
	+15 weeks	1.2-1.7	0.16-0.36	7.8-9.8
	Pre-vine kill	0.5-1.0	0.14-0.34	5.8-7.8
Lab C			-	
	Early season	0.8-1.2	0.12-0.2	9-11
	Mid season	0.6-0.9	0.08-0.16	7-9
	Late season	0.3-0.5	0.05-0.1	4-6
Hays and F	incastle for FL 1625, Russet Burbank or S	Snowden		
	early July (3 rd -7 th)	1.4-2.2	0.22-0.62	7-9
	late July (23 rd -30 th)	1.2-1.8	0.20-0.50	5-7
	mid August (12 th -17 th)	1.0-1.6	0.16-0.36	3.5-5.5

Table 9. Potato petiole nutrient sufficiency levels from three soil/plant analysis labs and levels
found in this project.

Table 10. GPS Application	ons 1996-1999		
Year/Crop	Site	GPS differential source	Monitor
1996			
Russet Burbank Potatoes	Fincastle	Novatel RT-20 + local base corrections	Harvestmaster
Snowden Potatoes	Hays	Novatel RT-20 + local base corrections	Harvestmaster
1997	•		
Russet Burbank Potatoes	Fincastle	Omnistar + geostationary corrections	Harvestmaster
Snowden Potatoes	Hays	Novatel RT-20 + local base corrections	Harvestmaster
Wheat	Hays	Omnistar + geostationary corrections	Ag Leader
Barley	Fincastle	Omnistar + geostationary corrections	Ag Leader
1998	•		
Russet Burbank Potatoes	Fincastle	Novatel RT-20 + local base corrections	Harvestmaster
Snowden Potatoes	Hays	Novatel RT-20 + local base corrections	Harvestmaster
1999	•		•
FL1625 Potatoes	Fincastle	Novatel RT-20 + local base corrections	Harvestmaster
Snowden Potatoes	Hays	Novatel RT-20 + local base corrections	Harvestmaster
Russet Burbank Potatoes (salinity only)	Vauxhall	Novatel RT-20 + local base corrections	EM38 salinity meter

RESULTS AND DISCUSSION

Soil Moisture, Water Tables and Yields

In 1996, at Hays, potatoes were grown on the east half of a high-pressure pivot (Fig. 3b), which was operated at less than the optimum pressure. This resulted in an uneven distribution of water with excess water applied near the centre and insufficient water applied on the outer parts of the circle. On the same pivot, in the following year, 1997 (Fig. 3a), potatoes were grown on the western half. Meanwhile, the farmer had redesigned his system, converting the high pressure pivot to a low pressure pivot. This new pivot had uneven calibration causing a high application of water on the outer part of the circle and less in the centre. The contrasting distribution patterns from the two years are shown in Fig. 3.

Prior to redesign of the pivot system, excess irrigation near the centre of the pivot caused accumulation of water below the root zone in Hays (1996) (Fig. 4b) while the surface layers (Fig. 4b) had deficient available water, especially in the outer parts of the pivot (30% to 55% of field capacity). These conditions create the possibility for leaching of nutrients below the root zone, waterlogging and increased disease in low areas of the fields. The excess irrigation occurred because the pivot was operating near the center at less than the designed pressure.

In three years, 1997-1999 and six fields, uniformity of irrigation application was a significant factor, influencing yield in four of the six fields. In three fields, Hays 1998 (Fig. 5a), Hays 1999 and Fincastle 1999 (Fig. 5b), total yield significantly increased with increasing irrigation.

Mean tuber weights were increased with increasing irrigation at Hays 1998 (Fig. 6a) and slightly, but not significantly, decreased with increasing irrigation at Hays in 1997 (Fig. 6b).

Irrigation management is one of the critical factors influencing both yield and tuber size. Areas of the field, which received more than average irrigation plus precipitation had increased tuber numbers, reduced mean tuber weights and greater numbers of small tubers, as compared with areas which received less than average irrigation plus precipitation.

At Fincastle in 1996 and in 1999 and on the two halves of a field in 1997 and 1998, corner pivots were used. These pivots did not provide as much water to the corners as the rest of the field. When the corner arm was extended and operating, the remainder of the pivot appeared to have reduced output.

Piezometer measurements of groundwater depth movement and soil NO₃-N content at the Hays site in 1997 (Fig. 7) and Fincastle 1997 (Fig. 8) and 1998 are reported by Rodvang (1998 and 1999). Hays had less than half the NO₃ N than Fincastle. The Hays site was irrigated more than the Fincastle site. Nitrate levels were low at depth but this may be due to reducing conditions, causing denitrification. Once all nitrate is reduced, denitrifying bacteria tend to reduce sulphate to H_2S . The odor of H_2S was present at two of the well sites at Hays in 1997 indicating some sulphate was being reduced (Rodvang, 1998). At some of the wells, the texture was coarse permitting downward movement of water. At Hays, the flow of groundwater occurred from the irrigated field outward to the unirrigated rangeland. Irrigation has caused water table mounding below the sites. Water tables rose during the summer at Hays and reached a peak of 1.2 m below the ground at one site in 1997 and 1.65 m in 1998.

At Fincastle, the irrigation applications generally were less than at Hays. The water table followed the surface topography. In 1997 water table depths ranged from 1.7 to 3.5 m. In 1998 at Fincastle, water table depths varied from 1.5 to 2.5 m below ground level and were over 5 m deep at one of the six sites. Water levels rose during the summer in both years and declined after late August. Vertical hydraulic gradients indicated slight downward flow at most piezometer nests.

In 1997, nitrate was present in soil water at the piezometer sites at levels from 1 to 20 mg/kg at Fincastle. Nitrate levels at Hays were lower, from 1 to 6 mg/kg. Site 6 (R6 in Fig. 7) was located on native range adjacent to the potato field and had almost no nitrate to a depth of 1.5 m. The difference between the nutrient level at this site and the other 5 sites shows the effect of irrigated agriculture for 19 years.

17

Soil water phosphorus (P) was from 4 to 10 mg/kg at the cultivated Hays replicates (Fig. 9). This was compareble to the Fincastle site, where P ranged from 20 to 40 mg/kg in the 0-0.15 m layer (Fig. 10). The higher levels of P at Fincastle than at Hays was because Fincastle received hog manure applications for a number of years. It is interesting that the P had not move below 0.60 m at the time of sampling.

Soil Fertility

Nitrogen

Nitrogen (N) is the fertilizer used in largest quantities by potato growers and application of 160 to 240 kg of N/ha cost from \$100-\$150/ha. Site specific applications of N offers possibilities for reduction of costs. Soil nutrient variability was more evident at Fincastle than at Hays. Soil nitrogen was variable on the previous fall samples for the 1997 Fincastle field and to a lesser extent on the 1997 Hays field. The 1997 Fincastle field, for the 0.0-0.60 m depth, had 40% of the sample sites considered to be very deficient, 51% deficient to marginal and 10% adequate to high (Table 11). The farmer applied 179 kg/ha N at hilling and another 41 kg/ha N by fertigation during the growing season. These applications would be anticipated to be in excess of what could be used by the crop in areas of the field that already had 73 and 173 kg/ha soil N and would be expected to reduce potato tuber specific gravity. However, there was no relationship between soil N and specific gravity at the grid sites on the field. The 1997 Fincastle site had 89% of the 0.0-0.60 m soil samples with less than 15% clay, which means excess N could easily move downward. In 1997, Hays had 73% of the sample sites with 31 kg/ha N for 0.0-0.60 m and 26% of the sites with 63 kg/ha N so the whole field was low in nitrogen.

In 1998 at Fincastle in the 0.0-0.60 m layer, 92% of the soil sample sites had less than 5 ppm N (very deficient) with an average of 14 kg/ha N. The remaining 8% (deficient to marginal) had an average of 65 kg/ha N. In 1998 at Hays, 68% of the soil sample sites had less than 5 ppm N and the remaining 32% of the sample sites had between 5 and 7.5 ppm N. The variability at these two fields in 1998 was not sufficient to justify the costs of site specific fertilization of nitrogen.

All the soil sample sites for 0.0-0.60 m at Hays in 1999 were less than 5 ppm N (Table 11). In 1999 at Fincastle the 0.0-0.60 m layer, 90% of the sample sites were very deficient (<5 ppm N),

6% were deficient to marginal (5-15 ppm N) and 4% were high (>20 ppm N). This site would offer possibilities for precision application of N with detailed mapping of soil N. This site had 27% of the 0.60-0.90 m samples with greater than average (165 kg/ha) soil N. The nitrogen at depth is evidence of leaching of nitrogen during previous cropping.

Soil N data collected from grid sampling for two fields for three years indicates only two of the six fields had sufficient variability in soil nitrogen to justify variable rate fertilization. Soil N for 6 fields (Fig. 11b) was not significantly related to petiole NO₃-N on July 3-7. This also indicates that when these fields were grouped together, variable rate application based on soil NO₃-N the previous fall does not offer possibilities for improved nitrogen management. Fincastle in 1997, and perhaps in 1999, had sufficient variability to justify the cost of sampling and analysis to determine soil nitrogen and then to apply variable rates of nitrogen fertilizer. The spatial soil fertility data must be collected before a decision can be made on the feasibility of variable rate fertilization.

Phosphorus

At Fincastle in 1997, soil phosphorus (P) for 0.0-0.15 m was high by Alberta Standards and exceeded 100 kg/ha P for 96% of the grid sample sites and exceeded 168 kg/ha P (20 ppm) for 58% of the sample sites (Table 12). This same field had 88% of the 0.0-0.30 m samples exceeding 200 kg/ha P and 46% of the samples exceeding 320 kg/ha P. The father of the current owners raised hogs from 1964 to about 1975 directly south of the 1997 site and used the 1997 field for spreading hog manure. It is not known how much hog manure was applied or what level the soil phosphorus reached but the subsequent 22 years cropping with little or no phosphorus fertilizer added has not yet reduced the soil P to levels which are environmentally safe. The adjacent field at Fincastle used in 1998 had only 6% of the samples for 0.0-0.15 m with soil P greater than 100 kg/ha.

In October 1998 before fertilizer was applied, the 1999 Fincastle site had high soil P in the 0.0-0.15 m layer (average 117 kg/ha) on the southern 67% of the field and adequate or marginal (average 50 kg/ha P) on the remainder of the field (Fig. 12a). The farmer had spread liquid hog manure on a portion of the field in the fall of 1997. This farmer applied 39 kg/ha P to the entire field in October 1998 and 29 kg/ha P in the spring of 1999. If phosphorus fertilizer costs \$1.25/ kg P, then \$1765 could have been saved from not applying P to the part of the field that received hog manure. The farmer's soil sample analysis results were not available from the fertilizer dealer for the fall of 1998 on the 1999 Fincastle field. It is not known if the fertilizer rates were estimated or were based on samples taken on the north end of the field where manure was not applied.

In 1999 at Hays (Table 12) in the 0.0-0.15 m layer, soil P was deficient to marginal on 62% of the field and adequate on 38% of the field (Miller-Axely method of analysis). The Hays fields did not have a history of receiving manure so they were generally lower in soil P than the Fincastle fields, which had received manure.

Potassium

Soil potassium (K) levels in samples from the Fincastle fields (Table 13) were usually adequate and, in a few cases, high. The 1997 field also had 13% of its grid sample sites with high levels of potassium (greater than 300 ppm in the 0.0-0.15 m depth). This appears to be a relic from the hog manure applications made between 1965 and 1974. Tissue potassium was adequate or high on the part of the field that received hog manure. If potassium fertilizer costs \$0.55/kg K then \$784 could have been saved in 1997 by not applying K to the field. The 1999 Fincastle field also had some sample sites with high levels of K. The sites in 1999 were not related to the portion of the field that received one application of hog manure in 1997. Fincastle sites have received manure applications and have been irrigated since 1956. This is longer than the Hays sites, which have been irrigated since 1978 and have not received manure applications.

The Hays sites in 1997 and 1998 (Table 13) were marginal to adequate in soil K. In 1999, the Hays sites were marginal to high but there was no easily identifiable pattern and the high areas were parts of the outer edge of the field. It does not seem economical to apply site specific applications of K to the Hays fields.

	Table 11. Soil nitrogen levels in ppm N (0.0-0.60 m depth) in October of the previous year for grid sample sites grouped by % according to Alberta Agriculture Standards.											
Location	on Year Very deficient Deficient Marginal Adequate High											
pp	m	<5	5-7.5	7.5-15	15-20	>20						
Hays	97	73	19	8	0	0						
	98	68	32	0	0	0						
	99	100	0	0	0	0						
Fincastle	97	40	25	26	6	4						
	98	92	6	2	0	0						
	99	90	2	4	0	4						

 Table 12. Soil phosphorus levels in ppm P (0.0-0.15 m depth) in October of the previous year for grid sample sites grouped by % according to Alberta Agriculture standards.

Location	Year	Deficient	Marginal	Adequate	High	Very high
ppr	n	<13	13-25	25-45	45-75	>75
Hays	97*	34	66	0	0	0
	98 *	8	60	31	0	0
	÷	12	79	8	0	0
	99 *	2	60	38	0	0
	÷	6	74	21	0	0
Fincastle	97*	0	0	4	38	58
	98 *	20	35	39	6	0
	÷	6	30	57	8	0
	99 *	6	16	12	64	0
	÷	2	24	22	53	0

Miller Axle y methodKelowna method

Table 13. S	Table 13. Soil potassium levels in ppm K (0.0-0.15 m depth) in October of the previous year for									
	grid sample sites grouped by % according to Alberta Agriculture standards.									
Location	Year	Deficient	Marginal	Adequate -	Adequate +	High				

Location	rear	Dencient	Marginai	Adequate -	Adequate +	High
I	opm	0-75	75-150	150-225	225-300	>300
Hays	97⁺●	0	67	23	9	2
	98*	0	38	52	10	0
	99 *	0	26	39	14	21
Fincastle	97† *	0	0	38	49	13
	98*	4	40	36	15	6
	99*	0	4	71	16	10

[†]0.0-0.30 m depth
^{*} Kelowna method
^{*} Ammonium acetate method

Table 14. Petiole analysis of N, P and K for 1996-99 for 3 dates for potatoes at Hays and Fincastle										
showing % of samples at adequate level.										
	NO ₃ -N %				P %			K%		
Table 14 a. 1996	July 3-4	July 30	Aug. 20 [?]	July 3-4	July 30	Aug. 20 [?]				
Adequate level	1.6-2.4	1.2-1.8	0.08-1.4	0.22-0.62	0.20-0.50	0.10- 0.30				
Hays % High	2	0	0	0	0	0				
% Adequate % Deficient	88 10	26 74	0 100	100 0	20 80	0 100				
Adequate level	1.6-2.4	1.2-1.8	0.10- 0.16	0.22-0.62	0.20- 0.50	0.16- 0.36				
Fincastle % High	0	0	0	0	0	0				
% Adequate	88	0	0	100	63	88				
% Deficient	12	100	100	0	37	12				
Table 14 b. 1997	July 3-7	July 23-24	Aug. 12-13	July 3-7	July 23-24	Aug. 12-13	July 3-7	July 23-24	Aug. 12-13	
Adequate level	0.1624	0.12- 0.18	0.10- 0.16	0.22-0.62	0.20- 0.50	0.16- 0.36	7-9	5-7	3.5-5.5	
Hays % High	0	0	0	0	0	0	0	40	67	
% Adequate	45	0	0	94	2	0	0	60	33	
% Deficient	55	100	100	6	98	100	100	0	0	
Fincastle % High	0	8	6	13	55	11	0	94	100	
% Adequate	12	17	32	87	39	79	6	6	0	
% Deficient	88	75	62	0	6	9	94	0	0	
Table 14 c. 1998	July 6-7	July 22-23	Aug. 10-11	July 6-7	July 22-23	Aug. 10-11	July 6-7	July 22-23	Aug. 10-11	
Adequate level	0.16-0.24	0.12- 0.18	0.10- 0.16	0.22-0.62	0.20- 0.50	0.16- 0.36	7-9	5-7	3.5-5.5	
Hays % High	0	0	4	17	0	0	0	67	100	
% Adequate	4	12	50	77	21	54	73	33	0	
% Deficient	96	88	46	6	79	46	27	0	0	
Fincastle % High	3	24	22	0	0	0	0	19	57	
% Adequate	21	59	57	76	30	6	33	73	41	
% Deficient	76	17	21	24	69	94	67	8	2	
Table 14 d. 1999	July 7	July 30	Aug. 17	July 7	July 30	Aug. 17	July 7	July 30	Aug. 17	
Adequate level	0.16-0.24	0.10- 0.18 [?]	0.08- 0.14 ?	0.22-0.62	0.18- 0.45 [?]	0.14- 0.34 ?	7-9	5-7	3.4- 5.4 ?	
Hays % High	9	6	2	0	0.15	0.51	80	0	0	
% Adequate	46	28	32	85	22	43	20	96	100	
% Deficient	44	66	66	15	88	57	0	4	0	
	July 9	July 28	Aug. 13	July 9	July 28	Aug. 13	July 9	July 28	Aug. 13	
Adequate level	1.6-2.4	1.2-1.8	1.0-1.6	0.22-0.62	0.20- 0.50	0.16- 0.36	7-9	5-7	3.5-5.5	
Fincastle % High	0	0	6	51	22	55	76	98	2	
% Adequate	14	20	29	45	65	41	24	2	92	
% Deficient	86	80	65	4	14	4	0	0	6	

? Standards were adjusted downward because of the late sampling date and Snowden, a mid-season variety, was nearing maturity.

Petiole Analysis

Potato producers routinely take petiole samples from late June through mid to late August. The samples are tested for nitrate nitrogen (NO₃-N) to help producers maintain consistent nitrogen health or to make corrections for insufficient N by fertigating the entire field. Historically, potato producers did not test for phosphorous or potassium status nor did they make adjustments for insufficient P and K. In the last 3 or 4 years, many have also been analyzing for P, K in addition to NO₃-N.

Nitrate Nitrogen

In 1996, petiole NO_3 –N (Table 14) was adequate at most of the sites at the time of the first sampling but, despite fertigation with additional N, it decreased and became deficient at the time of the second and third sampling.

In 1997, petiole N at Hays (Table 14b) was adequate on 45% and deficient on 55% of the sites at the time of the first sampling and deficient on 100% of the sites at the time of the second or third samplings. Soil nitrate N was deficient on 92% of the sites (Table 11) the previous October and 77% of the field had less than 15% clay in the 0.0-0.60 m. The field received from 0.37-0.45 m of rainfall and irrigation from June 23 to September 9 (Fig. 3a). The coarse textured soils permitted leaching of nitrogen below the root zone, which meant there was excess moisture.

In 1997, the Fincastle site was deficient in petiole N (Table 14) on 88% of the field in early July to 62% by August 12. Fincastle received about the same amount of irrigation and rainfall as Hays but over a period one week longer than the Hays site (June 24 to September 18). The Russet Burbank potatoes at Fincastle used more water in the latter part of the season than the earlier maturing Snowden potatoes at Hays.

In 1998, petiole analysis on both Hays and Fincastle indicated that the percent of samples that were deficient decreased from highs of 96 and 76 early in July to 46 and 21 by August 10 or 11 (Table 14c). Total soil nitrogen plus fertilizer nitrogen (Table 3) was higher in 1998 than in 1997 and 1996. This may be the reason that the tissue nitrogen did not decline like it did in 1996 and

1997. In 1999 at the time of the third petiole sampling (Table 14d), both Hays and Fincastle had about 66% of the samples deficient in petiole N.

Petiole analysis for nitrogen in the first week of July was significantly correlated with soil N the previous October in three of the six fields monitored, such as Hays in 1999 (Fig. 11a). This was before uniform applications of nitrogen fertilizer. However, petiole nitrate for all fields was not significantly correlated to soil nitrogen (Fig. 11b) and had an r of 0.95. Petiole nitrate was significantly positively correlated to soil clay per cent (Fig. 11c) with an r of 0.45. This means it would be more useful to base a variable nitrogen fertilizer application on soil clay content than on soil nitrogen. The fields chosen for this project had most of the samples with a clay content between 6% and 32% (Fig. 2). This is a lower range clay content than is typical for agricultural soils but it is typical for potato soils. The variability of texture of the soils used in this project may be higher than is typical of soils used for potato production.

Petiole nitrate N was significantly negatively correlated to tuber yield in early July (r = 0.25) (Fig. 11d) and in late July there was no significant relationship between petiole nitrate N and yield (Fig. 11e). In August (Fig. 11f) petiole nitrate N was significantly positively correlated (r = 0.155) to yield. This suggests nitrogen supply may be excessive early in the growing season and deficient later in the season. The areas with higher clay content could be expected to retain nitrogen late in the season, while those areas lower in clay content are subject to loss of nitrogen by leaching. These same areas with a higher clay content, and therefore a higher exchange capacity could be expected to have less soluble nitrogen early in the season, thus lower petiole N content than areas with a lower clay content.

Phosphorus

Tissue P at Hays in 1996 and 1997 (Fig. 13) was adequate in the first week of July and declined rapidly to become 100% deficient in the August samples (Tables 14a and 14b). This same decline did not occur at the Fincastle site, which had a higher level of available soil P (36% of soil sample sites tested marginal or higher) in 1997 as compared to Hays, which had 8% of soil P marginal or higher (Table 12).

24

In 1998, both fields were mostly marginal in soil P (Table 12) but received high applications of fertilizer P (119 kg/ha Hays and 153 kg/ha at Fincastle, Table 3). Despite these high applications of fertilizer, available tissue P declined by Aug. 10-11 to become 46% deficient at Hays and 94% deficient at Fincastle (Table 14c).

In 1999, in early July, the tissue P levels in the Hays field were mostly marginal (85 %) with some areas (15%) high (Table 14d). The Fincastle field was 51% high and 45% marginal and 4% low. Petiole P levels were high or adequate in the part of the field that had received hog manure. In the remainder of the field, petiole P levels were adequate on July 9 and declined to become deficient or adequate on July 28 and August 13.

Petiole phosphorus on six fields for July 3-7 was highly significantly positively correlated to soil P (Fig. 14a) ($r = 0.57^{**}$). On the same six fields, petiole phosphorus content was highly significantly negatively correlated to soil clay content (Fig. 14b) ($r = 0.32^{**}$). This occurs because soil P is tied up in unavailable forms on clay. However, there was no significant correlation between soil P and clay content. In contrast to soil nitrogen, soil phosphorus content can be used as a basis for variable rate application of phosphorus fertilizers. Petiole P was highly significantly positively correlated to yield at all three sampling times (Fig.14c, 14d and 14e). This indicates petiole P was low for optimum yields on these fields.

Potassium

Tissue K analysis was not done in 1996. In 1997, at both Hays and Fincastle, almost all sites were deficient in the first week of July (Table 14). By July 23 and 24 tissue levels increased and by August 12-13 the Hays field had 67% high levels of K and the Fincastle field had 100% high levels of K (Table 14 and Fig. 15). A similar pattern occurred in 1998. In 1997 mean tissue K at Hays was 6.2% July 3, 6.9% July 23 and 6.0% August 12. In 1997 at Fincastle, mean tissue K was 6.5% July 7, 7.5% July 24 and 6.4% August 13. However, in 1999 both Hays and Fincastle showed most of the field with excess levels of tissue K on July 7 and 9 (Fig. 16a) and this decreased to 0% with excess at Hays and 2% with excess at Fincastle by the 13th of August (Fig.16b).

It is not known why these tissue levels in 1997 and 1998 changed so much, in contrast to the standards, which indicate tissue K levels normally decline during the season. Potassium uptake is reduced by low soil temperature. The standards have been developed in parts of the USA where soil temperatures would usually be higher than in southern Alberta. In southern Alberta, June nights are often quite cool.

Tissue K levels at both sites for three years were not significantly related to yield. Apparently these K levels were not appreciably deficient. In another experiment, in 2000 and 2001, field tests with phosphorus fertilizer and compost at a total of 5 locations showed declining tissue potassium levels throughout the season. This problem of petiole K levels deficiencies needs more study in western Canada where soil K levels are usually high but some of the growing season temperatures are lower than required for maximum growth of potatoes.

Fertilizer Treatments

The N₃ treatment (Table 15) at Hays in 1997 gave the highest yield and the potato crop was worth \$116/ha more than the N₂ treatment but required \$60/ha more nitrogen fertilizer (N fertilizer cost = 0.66/kg) than the N₂ treatment. This increase in yield and value does not account for changes in quality such as low specific gravity, which may occur on the high N treatment. At Fincastle, the N₂ treatment, which was the farmer's rate, showed the highest yield. This N2 treatment also showed losses in nitrogen below the root zone (Rodvang, 1998). In 1998 the nutrients applied (Table 6) were in addition to the farmer's rate (Table 3).

Table 15. 1997 potato yields (t/ha) and gross value on fertilizer strips.						
Treatment		Hays	Fincastle			
	Yield	Gross value (\$/ha) [†]	Yield	Gross value (\$/ha) [†]		
N ₁	39.2	4140	39.4	4161		
N_2	42.5	4488	42.7	4509		
N ₃	43.6	4604	42.0	4435		

^{*} Value is based on 80% marketable at \$132/tonne.

At both sites in 1998 (Table 16), the N treatment yielded less than the check or farmer's rate (-4.4% Hays and -7.7% Fincastle). At both sites the NP treatment yielded similar to the check (-0.3% Hays and +1.1% Fincastle). The P treatment at both sites yielded more than the check

(+2.7% Hays and +5.3% Fincastle). These results indicate the farmers are at an optimum rate with respect to nitrogen. Phosphorus rates on these two fields may be low. Both of these fields had high phosphorus fertilizer applications (Table 3) and petiole P levels declined during the season (Table 12).

Table 16. 1998 potato yields (t/ha) and gross value on fertilizer strips.						
Treatment		Hays	Fincastle			
	Yield	Gross value (\$/ha) [†]	Yield	Gross value (\$/ha) [†]		
Ν	34.9	3685	33.2	3506		
Р	38.6	4076	37.8	3992		
NP	37.5	3961	36.6	3865		
Check	37.6	3970	35.9	3791		

[†] Value is based on 80% marketable at \$132/tonne.

In 1999, six treatments were set out at Hays (Table 7) consisting of two rates of compost, manure and phosphorus fertilizer. Disease counts on the foliage of the plants (Table 17) indicated that the low phosphorus treatment had a greater amount of foliar disease than all other treatments. The three high rate treatments also had a lower incidence of foliar disease than their corresponding low rate treatments, indicating an overall benefit of high rates of P, whatever the form, in terms of foliar disease. Because this field has been used a number of times for growing potatoes in the last 10 years, the level of foliar diseases was quite high. *Rhizoctonia* and scab counts were also made on the tuber surfaces. Variability on tuber disease counts was high and disease occurrence on tubers was low so no conclusions can be made regarding the influence of these treatments on tuber disease.

The 1999 Hays field has a history of developing low P levels in petioles in late July and August despite high rates of P fertilizer being applied. The treatments had no significant effect on tuber yields (Table 17) although compost and manure treatments yielded slightly more than the P treatments. Tuber numbers were also recorded for each treatment.

Table 17. Effect of P, compost and manure on tuber yield and size and disease incidence of potatoes – Hays, 1999.						
				% surface in on 160 tub	% plants affected	
	Total tuber	Medium	Tubers [†]			Disease [†]
Treatments	Wt (t/ha)	Tubers (t/ha)	/1.2 m	Rhizoctonia	Scab	on 600 m row
Low P	34.6	30.2	65	0.68	0.75	9.0
High P	36.5	32.5	70	0.32	0.88	7.1
Low compost	40.0	33.3	95	0.82	1.20	6.6
High compost	38.7	35.2	82	0.36	0.57	5.9
Low manure	37.2	34.0	81	0.68	0.57	7.6
High manure	39.8	36.2	75	0.86	0.73	6.1

* significant at 5% level

Pest Monitoring

Weeds

In most fields, the weeds did not occur in large numbers in any one area so they were not suitable for site specific management. In 1999 on the Hays field, there were patches from 10 m to 50 m in diameter, which were heavily infested with Canada Thistle. In late August prior to harvest, the perimeters of some of these patches were mapped with GPS. It was not possible to identify these patches on remote sensed imagery taken on July 28. If accurately identified, these patches of Canada Thistle could be controlled with spot applications of chemicals such as Lontrel (clopyralid) or Roundup (glyp hosate). These chemicals are toxic to potatoes so this is an extreme treatment and the herbicides need to be applied precisely. The potential exists for developing an irrigation system, which will provide site specific applications of herbicides, as well as water (Eberlein, 1999).

Disease

Diseases were monitored each year on all fields. Disease incidence was low and diseased plants were scattered. No attempt was made to map disease. Late blight did occur in varying degrees on the fields prior to harvest and it would have been possible to map this disease but it is difficult to distinguish from vine senescence. Disease surveys were done in the middle of August when the incidence of late blight was low.

Insects

Colorado potato beetles were the only insect pest present at sufficient levels to require insecticide application by the farmers. Colorado potato beetles are native to southern Alberta so the problem of resistance to insecticides is not as important as in areas where it only occurs on potatoes. It is not necessary to retain non resistant populations for reproduction in portions of the fields as described by Weisz et. al.(1996). Flescher et. al.(1999) describes how Colorado potato beetle are most dense near the edge of fields thus making them suitable for site specific management. However, due to farmer vigilance and spray programs, the Colorado potato beetles never became a serious problem in any areas of the fields tested, so were not suitable for site specific management.

Remote Sensing

Potato fields are closely monitored during the growing season for the onset of nutrient deficiencies, disease and pests. With respect to nutrients, typically test areas are established in a field and 40 to 50 petioles from representative plants are collected at each sampling date for determination of primarily N but also P and K content (Schaupmeyer, 1992). This method of petiole sampling provides only limited information regarding spatial variability across the whole field and does not provide information suitable for use with variable rate equipment. Remote sensing data offers one source of spatial information suitable for use in site-specific management systems. Digital imaging systems provide the potential to delineate management zones within a field based upon soil characteristics and the detection of crop stresses both in the short and long term (Brisco et al., 1998, Moran et al., 1997). A number of algorithms have been proposed to measure chlorophyll or N content of plants using remote sensing (Table 18). The close correlation between leaf chlorophyll and N availability suggests that chlorophyll content can be use to characterize N status and vice versa (Filella and Peñuelas, 1994). The majority of the algorithms or indices are based upon reflectance in the green (530-600 nm), red (670-680 nm) or so-called 'red-edge' (690-710 nm) normalized to reflectance in the near-infrared (750-900 nm) range of the electromagnetic spectrum. Reflectance at wavelengths above 735 nm is relatively insensitive to chlorophyll or N levels while reflectance at 550 and 690-710 nm is most sensitive. Sensitivity to N stress at 670-680 nm is variable due to the signal being saturated and reflectance reaching a minimum at relatively low chlorophyll levels (Gitelson et al., 1999). The objective within this study was to test, using airborne remote sensing imagery, the suitability of the reported algorithms to estimate petiole-N content in potatoes and examine the spatial information regarding N status across the field.

Index	Formula	Citation	CASI		
			bands		
<u>Simple ratio</u>		·			
SR _{800_670}	(R _{800nm} /R _{670nm})		17,25		
SR _{695_430}	$(R_{695nm}R_{430nm})$	Carter 1994	1,18		
SR _{605_760}	(R _{605nm} /R _{760nm})	Carter 1994	12,23		
SR _{695_760}	(R _{695nm} /R _{760nm})	Carter 1994	18,23		
SR _{695_670}	(R _{695nm} /R _{670nm})	Carter 1994	17,18		
SR _{750_705}	(R _{750nm} /R _{705nm})	Gitelson and Merzlyak 1996, Sims and Gamon 2002	19,22		
SR _{750_550}	(R _{750nm} /R _{550nm})	Gitelson and Merzlyak 1996, Lichtenthaler et al. 1996	9,22		
SR _{667_717}	(R_{667nm}/R_{717nm})	Leblon et al. 2001	17,20		
SR _{550_850}	(R _{550nm} /R _{850nm})	Schepers et al. 1996	9,28		
SR _{710_850}	(R _{710nm} /R _{850nm})	Schepers et al. 1996	19,28		
SR _{800_680}	(R _{800nm} /R _{680nm})	Sims and Gamon 2002	17,25		
SR _{735_700}	(R _{735nm} /R _{700nm})	Gitelson and Merzlyak. 1999	19,21		
Pigment specific simple ratio (PSSR)	(R _{810nm} /R _{676nm})	Blackburn 1998	17,26		
Normalized difference ind	lex				
Normalized green difference vegetation index (NGVDI)	$(R_{750nm} \oplus R_{550nm})/(R_{750nm} + R_{550nm})$	Gitelson et al. 1996	9,22		
Photochemical reflectance index (PRI)	$(R_{531nm} \oplus R_{570nm})/(R_{531nm} + R_{570nm})$	Gamon et al. 1992	8,10		
Pigment specific normalized difference (PSND)	$(R_{810nm} \oplus R_{676nm})/(R_{810nm} + R_{676nm})$	Blackburn 1998	17,26		
Normalized difference index	$(R_{750nm} \oplus R_{700nm})/(R_{750nm} + R_{700nm})$	Gitelson and Merzylak 1994, Sims and Gamon 2002	19,22		
(NDI _{750_700}) Normalized difference index (NDI _{800_680})	$(R_{800nm} \stackrel{*}{•} R_{680nm})/(R_{800nm} + R_{680nm})$	Sims and Gamon 2002	17, 25		
Normalized pigments chlorophyll ratio index (NPCI)	$(R_{680nm} \oplus R_{430nm})/(R_{680nm} + R_{430nm})$	Peñuelas et al. 1994	1,17		
Structure-insensitive pigment index (SIPI)	$(R_{800nm} \clubsuit R_{445nm})/(R_{800nm} + R_{680nm})$	Peñuelas et al. 1995	2, 17, 25		
<u>Others</u>					
Modified simple ratio (mSR _{750_445})	(R _{750nm} & R _{445nm})/(R _{705nm} & R _{445nm})	Sims and Gamon 2002	2, 19, 22		
Modified normalized ratio (mNR _{750_445})	$ \begin{array}{c} (R_{750nm} \clubsuit R_{705nm}) / (R_{750nm} + R_{705nm}) \\ \clubsuit 2^* R_{445nm}) \end{array} $	Sims and Gamon 2002	2, 19, 22		
Optimized soil adjusted vegetation index (OSAVI)	$(1 + 0.16)^*(R_{800nm} \oplus R_{670nm})/(R_{800nm} + R_{670nm} + 0.16)$	Rondeaux et al. 199	17,25		
Modified chlorophyll absorption in reflectance index (MCARI)	$[(R_{700nm} \textcircled{\oplus} R_{670nm}) \textcircled{\oplus} (0.2^*(R_{700nm} \textcircled{\oplus} R_{550nm}))^*(R_{700nm}/R_{670nm})]$	Daughtry et al. 2000	9, 17, 19		
Transformed chlorophyll absorption in reflectance index (TCARI)	$3^{*}[(R_{700nm} R_{670nm}) \oplus (0.2^{*}(R_{700nm} R_{550nm})) \\ *(R_{700nm}/R_{670nm})]$	Haboudane et al. 2002	9, 17, 19		
Plant senescence reflectance index (PSRI)	$(R_{680nm} \oplus R_{500nm})/(R_{750nm})$	Merzlyak et al. 1999	6, 17, 22		
Carotenoids	[4.145*(S _{760nm} / S _{500nm})*(R _{500nm} /R _{760nm})]- 1.171	Chapelle et al. 1992	5,23		
Chlorophyll b	$\frac{2.94*[((S_{675nm/} R_{650nm} * R_{700nm})*(R_{650nm} * R_{700nm}/R_{675nm}))]{+}0.378$	Chapelle et al. 1992	15, 17, 18		
Chlorophyll a	$\frac{22.735[=(S_{675nm}/S700_{nm})*(R_{700nm}/R_{675nm})]}{10.407}$	Chapelle et al. 1992	17,18		

Nitrogen

On July 28, 1999, Itres acquired digital images over the Hays and Fincastle test fields. The image data were acquired over the spectral range 420-965 nm using a Compact Airborne Spectrographic Imager (CASI) at 2 and 3 m resolution. The spectral bands in which data were acquired varied with the resolution from 36 to 48 nm respectively. The image data were radiometrically corrected and geocoded by Itres.

The data were imported into the ENVI? image analysis software package (Research Systems Inc. Colorado, USA) and converted from spectral radiance units (μ W cm⁻² sr⁻¹ nm⁻¹) to surface reflectance (%) using the FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) atmospheric correction model (Anon., 2001). The input parameters used in the model are shown in Table 19.

Table 19. Input parameters for the FLAASHatmospheric correction model.									
Parameter Input									
Latitude/Longitude	49.9867N, 111.8523W								
Sensor altitude	2.286 km								
Ground elevation	0.786 km								
Atmospheric model	Sub-Artic Summer								
Aerosol model	Rural								
Visibility	40 km								

Images of the various chlorophyll/N indices outlined in Table 18 were created using the band math function in the image analysis software. The spatial patterns of the indices across the sites were visually examined and compared to those in the kriged maps derived from the ground based petiole nitrate N samples. The grid sampling points were overlaid on the imagery and the reflectance values under a 3 x 3-pixel window centered over each grid point were extracted for each band and each chlorophyll/N index. The relationship between the various chlorophyll/N indices and the petiole nitrate N values was assessed using correlation and regression analyses.

True colour images derived from the 2 m resolution airborne imagery for both the Fincastle and Hays sites are shown in Fig. 17. Both the 2 and 3 m resolution images were processed but due to the similarity in the information content only the 2 m data will be discussed. The images show differential "greeness" across the fields, particularly in the Hays field. The spatial patterns tend

to correspond to soil texture, particularly in the northern end of the field at Hays and likely results from poorer growth on the coarse textured soils. Consistent with the observation that many of the proposed indices involve reflectance in similar wavebands, the spatial patterns in the images derived for the various indices were similar (Table 18). Only the images showing the spatial variability in the index $SR_{550_{-}850}$ derived from reflectance at 550 and 850 nm are shown (Fig. 18 and 19). Visual comparison of the petiole-N maps derived in Surfer? using the grid point petiole nitrate N data and the index $SR_{550_{-}850}$ shows similarities in the patterns across both fields. Generally, areas of low petiole nitrate N exhibited high values for the $SR_{550_{-}850}$ index.

Fincastle Site

Correlation analysis showed a strong relationship between most of the chlorophyll/N indices and petiole nitrate N for the Fincastle site (Table 20). The strongest relationships were evident with simple ratios involving either reflectance in the green band (550 nm) or the red-edge (700-710 nm) and the near infrared reflectance (750-850 nm). These observations can be attributed to the greater range of chlorophyll/N content to which reflectance at 550 and 700-710 nm responds. The absorption feature at 660-680 nm saturates at relatively low chlorophyll content and thus relative to 550 or 700-710 nm is insensitive to variation in chlorophyll/N.

Hays Site

At the Hays site, visually there were some similarities between the spatial patterns within the image of the SR_{550_850} index and the kriged map of the ground based sampling. The extent of the N deficient areas in the remote sensing image appeared less than in the kriged map. The imagery may provide a more accurate representation of the spatial variability given that each pixel in the remote sensing image represents information from an area of 2 x 2 m on the ground while the ground data is an interpolation from grid points at greater than 100 m apart. Quantitative analysis showed only a limited number of indices were significantly related to petiole nitrate N. The strength of the relationship was poor compared to that at the Fincastle site. The lack of a strong relationship may reflect uncertainty in the georeferencing of the airborne imagery and the sampling sites and the heterogeneity of the crop reflectance in the areas selected for sampling (Deguise et al., 1998).

33

petiole nitrate N sam	ipies.	
Index	Fincastle	Hays
Simple ratio	·	
SR800_680	0.751	NS
SR695_430	-0.734	-0.356
SR605_760	-0.781	NS
SR695_760	-0.748	NS
SR695_670	0.449	-0.318
SR750_705	0.820	NS
SR750_550	0.821	NS
SR677_717	-0.639	NS
SR550_850	-0.832	NS
SR710_850	-0.832	NS
SR735_700	0.821	NS
PSSR	0.764	NS
Normalized difference index	X	
NGVDI	0.809	NS
PRI	0.770	NS
PSND	0.706	NS
NDI750_700	0.809	NS
NDI750_705	0.696	NS
NDI800_680	0.707	NS
SIPI	-0.660	NS
Other	I	
mSR750_705	0.821	0.326
mNR750_705	0.813	0.308
OSAVI	0.722	NS
MCARI	0.445	-0.298
TCARI	-0.800	-0.317
PSRI	-0.597	
Carotenoids	0.746	NS
Chlorophyll a	-0.448	0.313
Chlorophyll b	-0.674	NS
PSRI	-0.597	NS
NPCI	-0.702	NS
# of Observations	N=51	N=54

Summary

The results of the study indicated that potato petiole nitrate N could be estimated from remote sensing imagery at one test site but not the other. At the Fincastle site, visually the spatial patterns in the remote sensing derived maps for N levels and those derived from ground based plant sampling were similar. Errors in the overlay of petiole sampling points on the remote sensing imagery may account for the lack of a significant quantitative relationship at the Hays site. Further studies are being conducted to determine the ability to estimate plant N content using remote sensing techniques.

Soil Salinity

A soil salinity map was made of the additional Vauxhall potato field in 1999 (Fig. 20). This permitted identifying those areas of the field where problem levels of salinity occurred. Tuber samples in these areas were compared to measurements of electrical conductivity (E.C.) calculated from EM38 readings and a tolerance of potatoes to salinity was developed for this field (Fig. 21a). A 50% yield reduction of potatoes occurred at an E.C. of about 6 dS/m. This method is suitable for precision applications to potato production. A salinity tolerance limit and a salinity map means it is then possible to identify those areas where it is not feasible to grow potatoes. Specific gravity of tubers was found to be higher in saline soils than non-saline soils (Fig. 21b).

CONCLUSIONS

A yield monitor was successfully adapted to two farmers' potato harvesters. Maps of tuber yields were developed based on data collected from the harvester. Difficulties were encountered on parts of fields where soil lumps occurred. These lumps usually occurred on areas with a high clay content and resulted in false high yield readings from the mass-based yield sensor. This will be a major restriction to yield mapping of potatoes unless technology can be developed to separate tubers from soil lumps on the harvester belt.

Yield maps were also developed from grid sampling. These grid samples were used to determine tuber yield, average tuber size and tuber quality as measured by specific gravity, chipping score and French fry score. Uniformity of tuber quality is a major concern of processors. Uniformity of irrigation affected tuber size. No relationship was found between chipping and French fry score and the measured factors of soil or water in the field.

Grid sampling was used to develop numerous maps of irrigation and precipitation, consumptive water use, soil texture and nutrient contents, plant petiole (tissue) nutrient contents and the tuber characteristics just described.

Grid sampling of the fields showed variability in soil texture. Most of the fields contained about 6 to 30% clay with a few sites with as much as 40% clay. The texture was correlated to various soil and plant chemical properties.

When yield mapping with differential GPS using a base station in the corner of the field, accurate topographic maps could be developed. When differential corrections were obtained from a geostationary satellite service, the vertical accuracy was no longer suitable for confident topographical mapping.

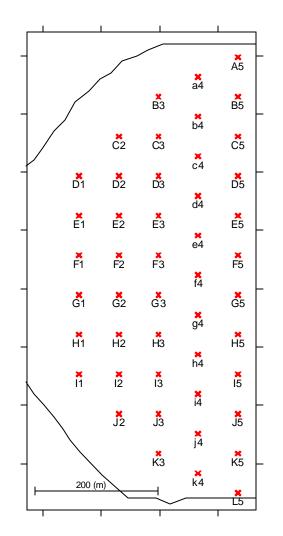
Soil levels and fertilizer applications of nitrogen by the farmers were in most cases equal to what a crop of potatoes yielding 50 t/ha would be anticipated to take up. No allowance was made for release of nitrogen from soil organic matter. Tissue nitrate levels were frequently deficient according to standards used by Alberta potato growers. Two of six fields had sufficient variability of soil nitrogen to justify the cost of soil sampling and variable rate application. However, petiole NO₃-N in the first week of July was significantly negatively related to clay content (0.0-0.60 m) and was not significantly related to soil NO₃-N. This means it would be more useful for farmers on these fields to base a site specific nitrogen application on soil clay content than on soil NO₃-N content.

Soil P was significantly positively correlated to petiole P content. Soil P was not significantly correlated to clay content or other easily-measured soil characteristics. Opportunities exist for precision applications of phosphorus particularly on two of the fields that had a history of receiving non-uniform applications of manure. Thus, in the absence of any easily-measured factors that are correlated to P, a strategy of phosphorus fertilizer applications based on grid sampling of soil phosphorus should provide some improvement in efficiency of uptake of phosphorus.

36

Potassium levels in the soil from 1997 to 1999 were marginal to adequate on most grid sample sites. In 1997 and 1998 petiole K levels were deficient in the first week of July but became adequate to high in two later samplings. The reason for this is not known. It may be due to lower soil temperatures in early July restricting uptake, rather than the higher soil temperatures in the USA where the standards were developed. There is a need for research that will develop local standards for petiole K levels.

Diseases and insect pests were examined but their occurrence was very infrequent and highly variable, thus not predictable or manageable with site specific technologies. Weeds were carefully managed by farmers thus fields were too weed-free to allow for examination of the usefulness of site specific management for weed control. The sites used in the trials, like most potato fields, were extremely flat, which eliminated the opportunity for relating landscape position to potato yield.


Economic analysis indicated that grid sampling and site specific applications of P and K, on a field that received uneven manure applications, would have realized significant savings.

Remote sensing imagery was successful correlated to plant petiole NO3-N at one test site but not the other. Errors in the overlay of petiole sampling points on the remote sensing imagery may account for the lack of a significant quantitative relationship at the Hays site.

Piezometers were used to measure groundwater depth movement and soil NO_3 -N content at the Hays (1997) and Fincastle (1997, 1998) sites. Overall, nitrate levels were low at depth but this may have been due to reducing conditions, causing denitrification. At the Hays site, flow of groundwater occurred from the irrigated field outward to an unirrigated rangeland. Irrigation has caused water table mounding below the sites and water tables rose during the summer at the Hays site.

37

FIGURES

Snowden Potatoes: Hays 1997 Sample Sites

Figure 1. Sampling grid for yield, petioles, water and soil samples for Snowden potatoes grown at Hays in 1997.

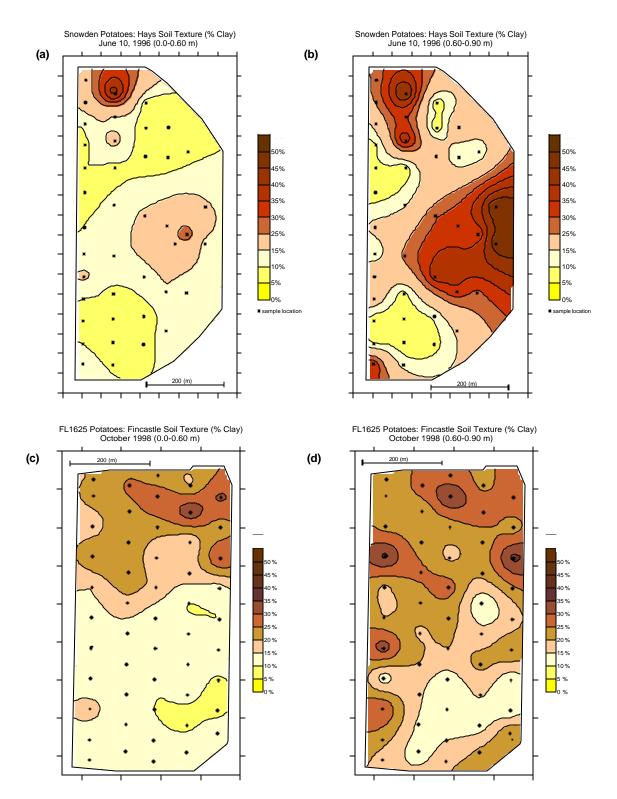


Figure 2. Soil texture maps of Hays 1996 (a and b) and Fincastle 1999 (c and d) fields for two soil depths 0.0-0.60 m and 0.60-0.90 m.

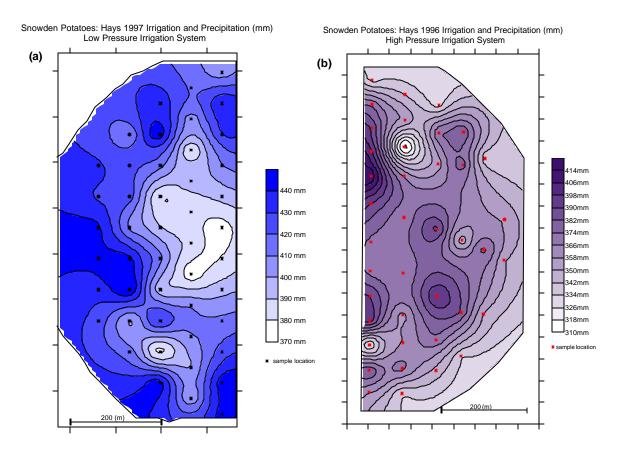


Figure 3. Change of sprinkler design causing contrasting distribution of irrigation and preciptation at Hays in 1997 west (a) and 1996 east (b).

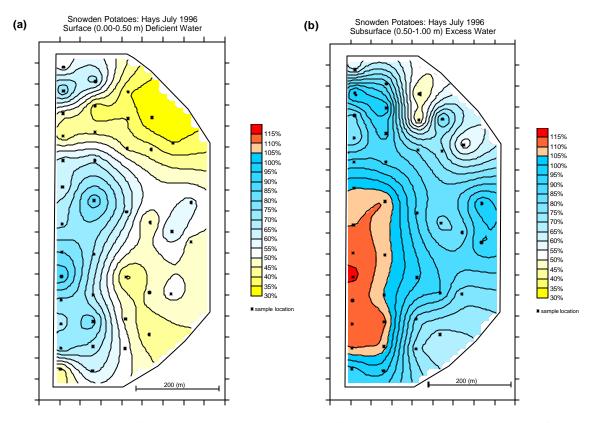
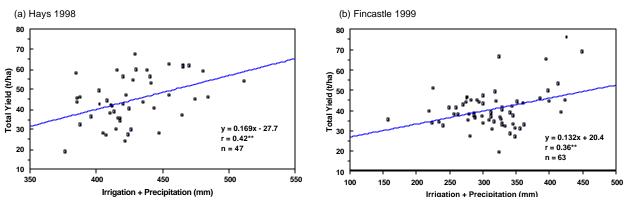



Figure 4. Percent of available moisture (100% = field capacity) in 1996 at Hays for (a) 0.0-0.50 m and (b) 0.50-1.00 m.

** = r significant at the 0.01 level

Figure 5. Correlation between total potato yield and total added water (irrigation + precipitation) at (a)Hays 1998 and (b)Fincastle 1999.

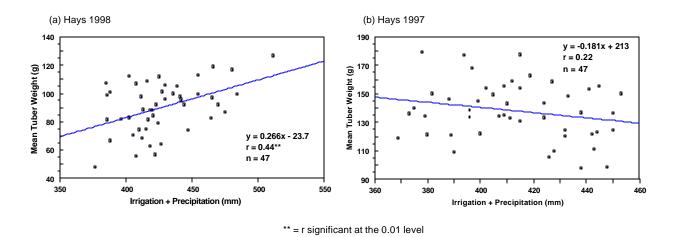


Figure 6. Correlation between mean tuber weight and total added water (irrigation + precipitation) at (a)Hays 1998 and (b)Hays 1997.

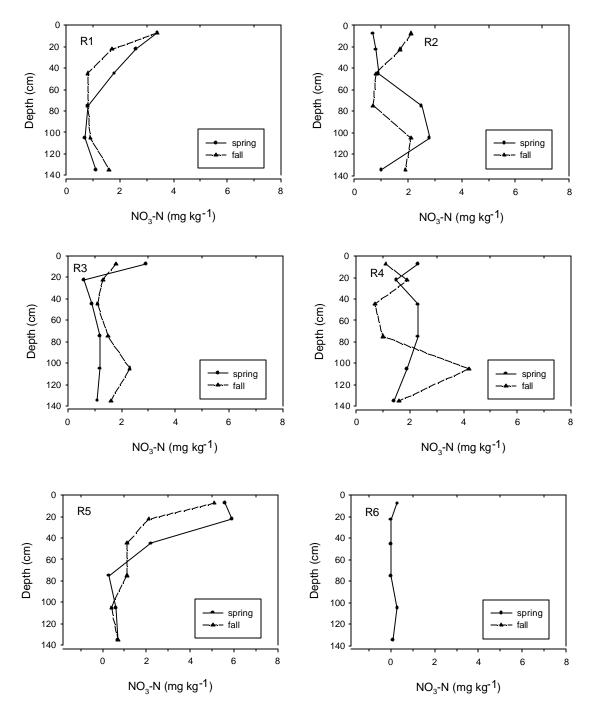


Figure 7. Soil NO₃-N at piezometer sites from 1997 at Hays.

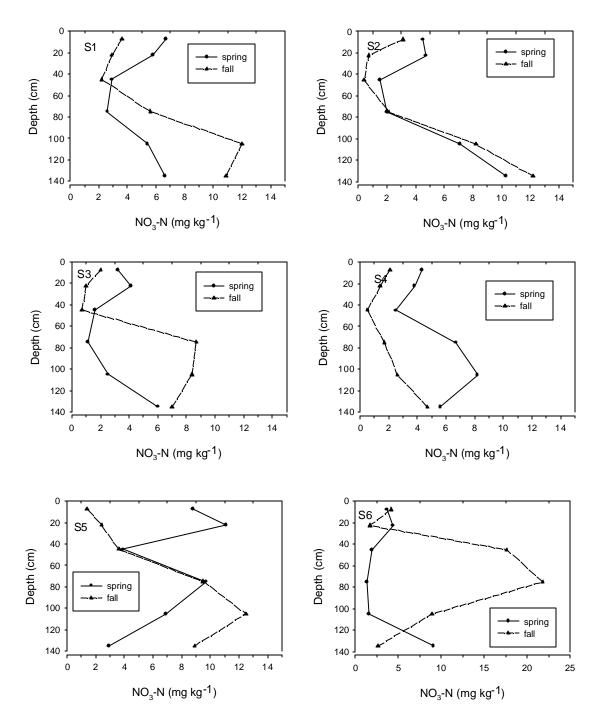


Figure 8. Soil NO₃-N levels at piezometer sites from 1997 at Fincastle.

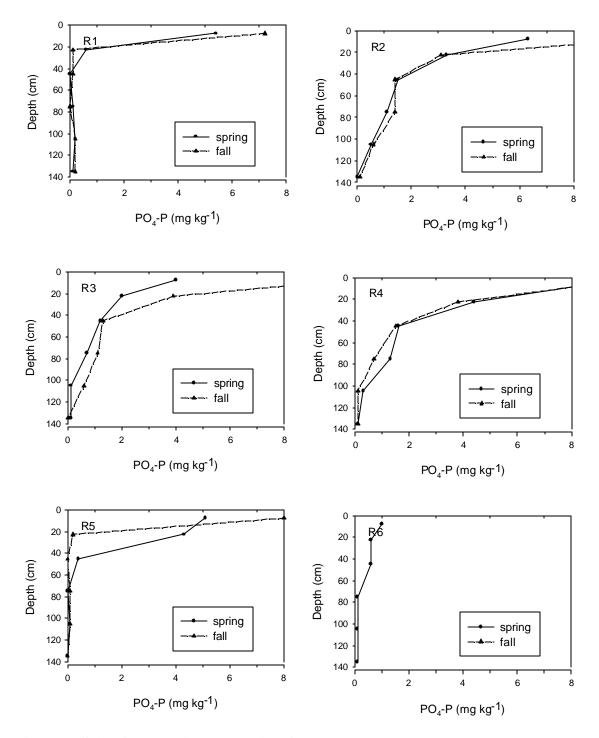


Figure 9. Soil PO₄-P at piezometer sites from 1997 at Hays.

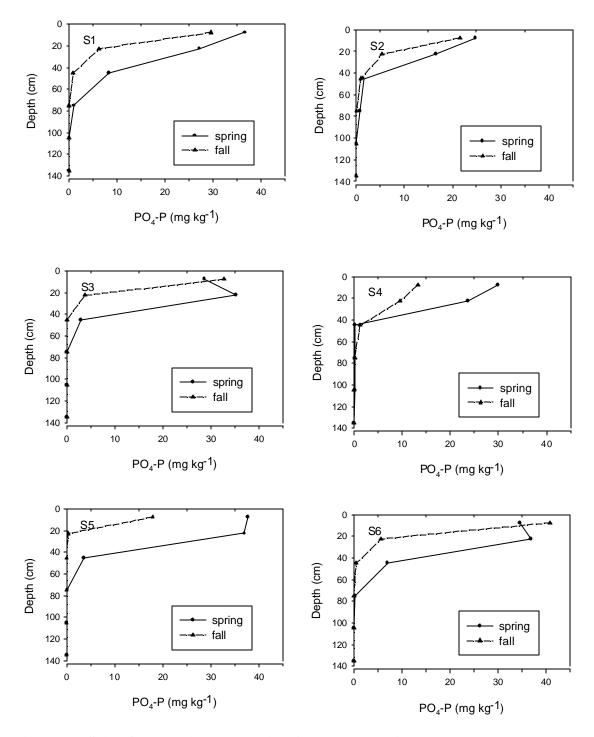
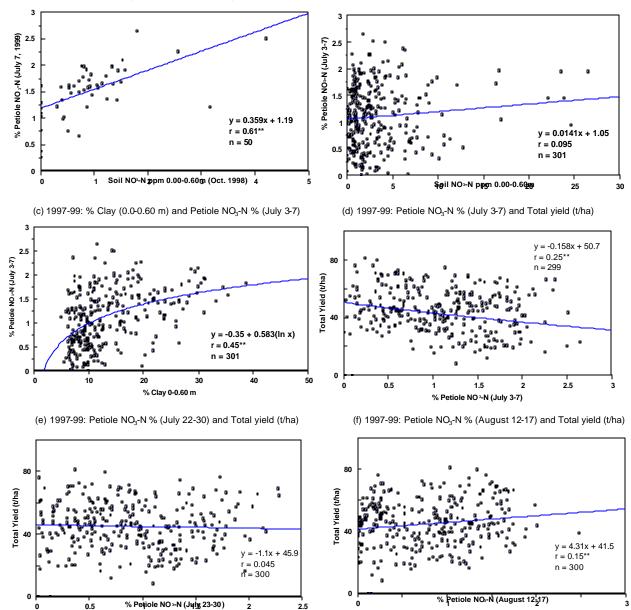



Figure 10. Soil PO₄-P at piezo meter sites from 1997 at Fincastle.

(a) Hays 1999: Soil NO₃-N ppm and Petiole NO₃-N % (July 7)

(b) 1997-99: Soil NO₃-N ppm and Petiole NO₃-N % (July3- 7)

* = r significant at the 0.05 level, ** = r significant at the 0.01 level

Figure 11. Correlation between potato petiole NO₃-N and (a) soil NO₃-N for Hays 1999 and (b) soil NO₃-N, (c) soil clay and (d, e and f) total yield for Fincastle and Hays potatoes 1997-1999.

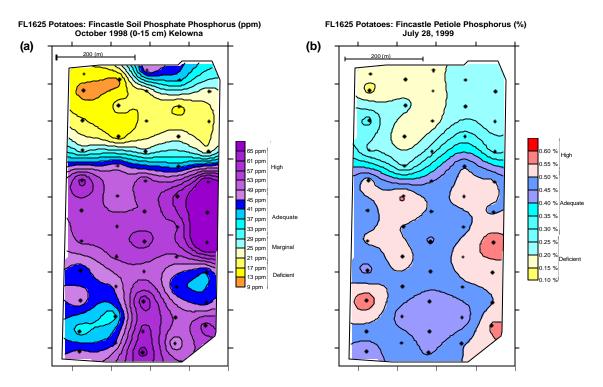
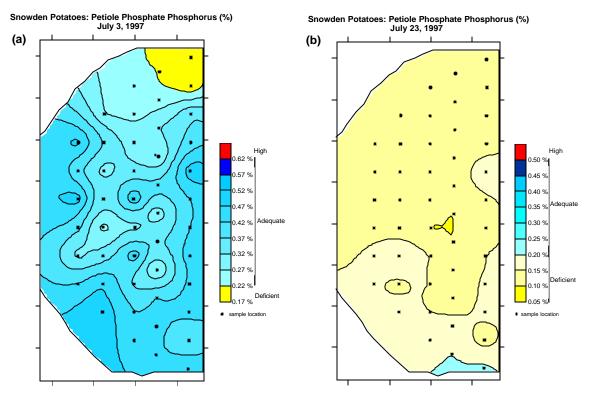
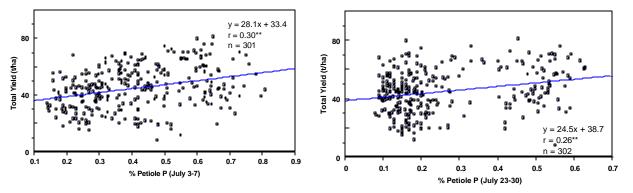
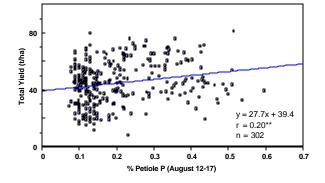


Figure 12. Fincastle (a) soil PO₄-P (October 1998, 0.00-0.15 m) and (b) petiole P (July 28, 1999) for a field which was partially fertilized with hog manure October 1997.




Figure 13. Petiole P levels at Hays (July 1998) showing rapid decline of petiole P from (a) July 3 to (b) July 23, 1997.

(a) 1997-99: Soil P ppm (0.0-0.15 m) and Petiole P % (July 3-7)



 $\begin{array}{c} 0.9 \\ 0.7 \\$

(d) 1997-99: Petiole P % (July 23-30) and Total Yield (t/ha)

(e) 1997-99: Petiole P % (August 12-17) and Total Yield (t/ha)

* = r significant at the 0.05 level, ** = r significant at the 0.01 level

Figure 14. Correlation between potato petiole P and (a) soil PO₄-P, (b) soil clay and (c, d and e) total yield for 3 sampling dates at Hays and Fincastle for 1997-1999.

(b) 1997-99: Soil % Clay (0-0.60 m) and Petiole P % (July 3-7)

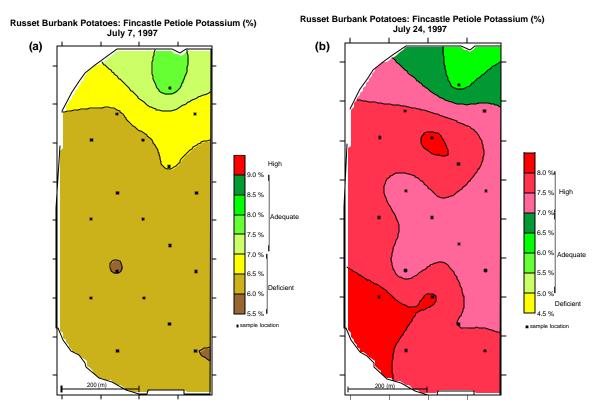


Figure 15. Petiole potassium showing an increase of percent K from (a) July 7, 1997 to (b) July 24, 1997 at Fincastle.

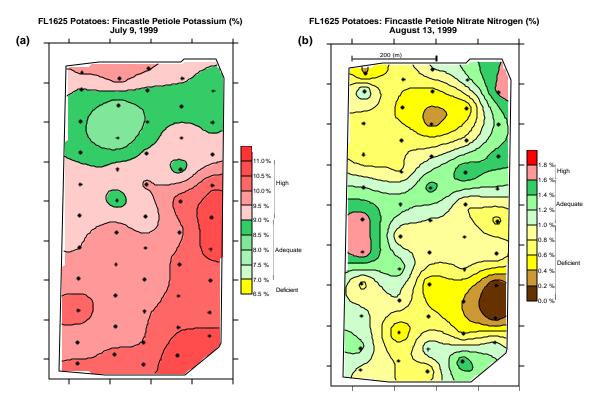


Figure 16. Petiole potassium showing a slight decrease of percent K from (a) July 9, 1999 to (b) August 13, 1999 at Fincastle.

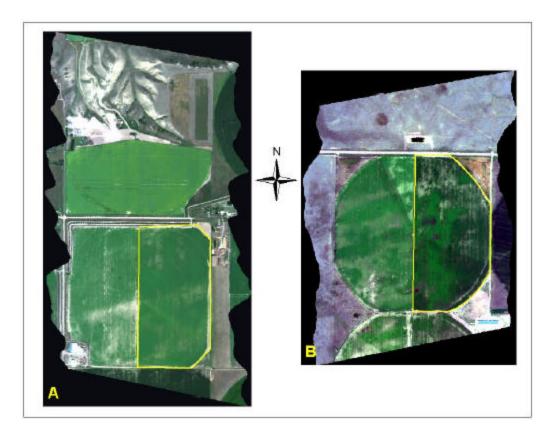
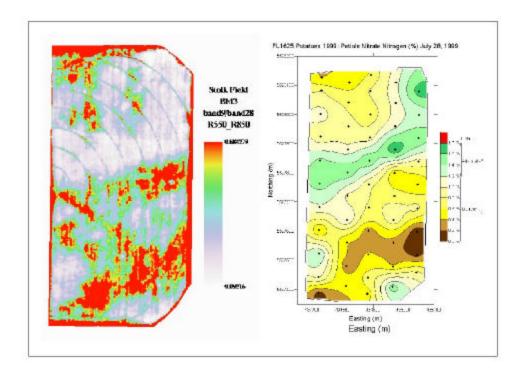
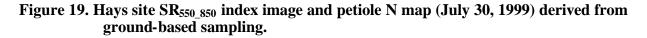




Figure 17. True colour composite images acquired July 28, 1999 at the (a) Fincastle and (b) Hays sites.

Figure 18. Fincastle site SR_{550_850} index image and petiole N map (July 28, 1999) derived from ground-based sampling.

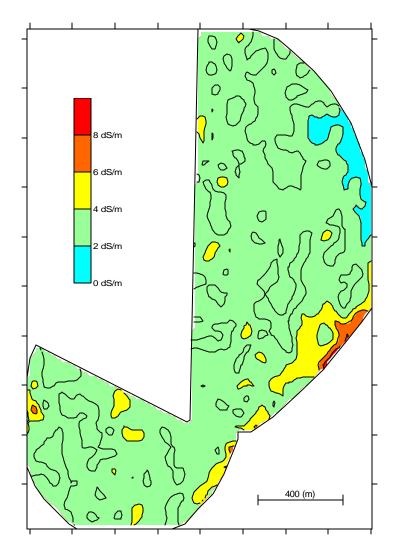
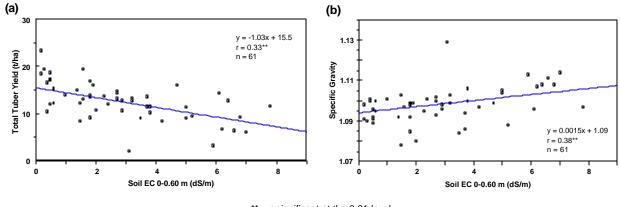



Figure 20. Soil salinity map (E.C. dS/m) for Vauxhall potatoes, April 1999.

** = r significant at the 0.01 level

Figure 21. The effect of soil salinity on (a) tuber yield and (b) tuber specific gravity for Vauxhall potatoes 1999.

IMPLICATIONS OF THE STUDY WITH REGARD TO THE IMPROVEMENT OF ALBERTA'S AGRICULTURAL AND FOOD INDUSTRY AND ADVANCEMENT OF AGRICULTURAL KNOWLEDGE

This project showed the difficulties using current yield monitoring equipment on many commercial fields. When soil variability is present, there are areas, which contain a high percentage of clay and form lumps on the harvester. The yield monitor weighs the material on the harvester belt and does not distinguish between potatoes and other material. Yield monitors usually work satisfactorily on fields, which do not contain medium or fine textured areas. Upper limits of currently used potato petiole nutrient sufficiency standards for phosphorus were found to be high. Subsequent experiments with rates of phosphorus on potatoes have confirmed this.

Petiole nutrient contents of potassium were shown to be unreliable as an indication of potassium deficiency. Research needs to be done to determine what are critical levels for yield or quality and what factors influence the potassium of petioles when grown under conditions with cold night temperatures like those of southern Alberta.

Field variability and lack of uniformity of output of irrigation water were found to be factors, which influence the growth and quality of potatoes. Farmers would do well to measure the output and uniformity of their irrigation systems.

Soil salinity was shown to be a measurable characteristic, which can be used to select portions of potential fields, which are not suitable for growing potatoes.

Site specific monitoring and yield mapping of a potato field, which is sampled by grid is a useful research technique to identify factors, which may be influencing yield and quality of potatoes.

ACKNOWLEDGEMENTS

Support for this project was received from the Alberta Agriculture Research Institute, Potato Growers of Alberta, Cargill, Potash and Phosphate Institute of Canada, Southern Agri Services, Westco and The Snack Food Association of Canada. Laboratory analysis was provided by the AAFRD Soil and Crop Diagnostic Centre, Edmonton. Two farm operations – one at Hays, the other Fincastle – allowed access to their fields and their potato and grain harvesters.

J. Rodvang monitored ground water at a series of piezometer nests in 1997 and 1998 and prepared the related portion of this document, including the text and Figures 7-10.

A. Smith of Agriculture and Agri-Food Canada, Lethbridge interpreted the 1999 CASI data and prepared the related portion of this document, including the text, Tables.18-20 and Figure 17-19.A. Smith's full report also appears as an appendix in this document.

L. Hingley, technologist for the Soil and Water Agronomy Program, conducted yield monitoring, sample collection and data organization and he prepared the figures and appendices for this document.

The Precision Agriculture Project with Potatoes was operated by an Alberta Agriculture, Food and Rural Development (AAFRD) team. Soil moisture budgets were determined by R. Hohm and T. Harms. D. McKenzie, R. Skretting, B. winter, T. Dell, A. Harms, H. Harms and L. Wenger collected and processed samples. J. Panford organized measurement of tuber chipping and French fry scores. M. Eliason and D. McKay assisted with setting up yield monitoring equipment. C. Murray proofread the manuscript. Word processing of the manuscript was done by S. Day and M. Bunney.

REFERENCES

Anon. 2001. FLAASH User's Guide. Version 1.0. Research Systems, Boulder CO. 57 p.

Blackburn G.A., 1998. Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sensing of Environment 66: 273-285.

Brisco, B., R.J. Brown, T. Hirose, K. Staenz, 1998. Precision agriculture and the role of remote sensing: a review. Canadian Journal of Remote Sensing Vol. 24, No.3, 315-327.

Bouma, J., J. Brouwer, A. Verhagen, and H.W.G. Bootink, 1995. Site specific management on field level: high and low tech approaches. In *Eco-regional approaches for sustainable land use and food production*. Eds. J.Bouma et al. Netherlands, Kluwer Academic Publishers. pp. 453-473.

Cambouris, A.N., M.C. Nolin, and R.R. Simard, 1999. Precision management of fertilizer phosphorus and potassium for potato in Quebec, Canada. In *Proceedings of the 4th International Conference on Precision Agriculture*. ASA-CSA-SSSA, Madison, WI, USA. pp. 847-857.

Campbell, R.H., 1999. Recent advances in yield monitoring of conveyor harvested crops. In *Proceedings of the 4th International Conference on Precision Agriculture*. ASA-CSSA-SSSA, Madison, WI, USA. pp. 1101-1106.

Cannon, M.E., R.C. McKenzie, and G. Lachapelle, 1994. Mapping soil salinity with electromagnetic induction and satellite navigation methods. Canadian Journal of Soil Science 74: 335-343.

Carter G.A., 1994. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing 15: 697-703

Chapelle E.W., M.S. Moon and J.E. McMurtrey III, 1992. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of Environment 39: 239-247.

Daughtry C.S.T., C.L. Waltahll, M.S. Kim, E. Brown de Colstoun and J.E. McMurtery III, 2000. Estimating corn leaf chlorophyll concentartion from leaf and canopy reflectance. Remote Sensing of Environment 74: 229-239.

Davenport, J.R., M.J. Hallendorf, R.G. Evans, S. Han and S.M. Schneider, 1999. Phosphorus fertilizer management strategies for variable rate fertilizer applications in center pivot irrigated potato rotations. In *Proceedings of 4th International Conference on Precision Agriculture*. ASA-CSSA-SSSA. Madison, WI, USA. pp. 745-752.

Deguise, J.C., H. McNairn, K. Staenz and M. McGovern, 1999. Spatial high resolution crop measurements with airborne hyperspectral remote sensing. In *Proceedings of 4th International Conference on Precision Agriculture*. ASA-CSA-SSSA, Madison, WI, USA. pp. 1603-1608.

Delgado, J.A. and H.R. Duke, 2000. Potential use of precision farming to improve nutrient management on an irrigated potato-barley rotation. In *Proceedings of 5th International Conference on Precision Agriculture*. ASA-CSSA-SSSA. Madison, WI, USA. In press.

Eberlein, C.V., B.A. King and M.J. Guttieri, 1999. Weed management with site specific herbigation. In *Proceedings of the 4th International Conference on Precision Agriculture*. ASA-CSA-SSSA, Madison, WI, USA. pp. 869-877.

Filella J. and J. Peñuelas, 1994. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing 15: 1459-1470.

Fleischer, S.B., P. Blam, D. Emmen and H. Hower, 1999. Dynamics in the spatial continuity of insect density. ASA-CSA-SSSA, Madison, WI, USA. pp. 133-139.

Gamon J.A., J. Peñuelas and C.B. Field, 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment 41: 35-44.

Gitelson A. and M.N. Merzlyak, 1994. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L leaves. Spectral features and relation to chlorophyll estimation. Journal Photochemical and Photobiology Biol. 22: 247-252.

Gitelson A.A. and M.N. Merzlyak, 1996. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology 148: 494-500.

Gitelson A.A., C. Buschmann and H.K. Lichtenthaler, 1999. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of chlorophyll contents in plants. Remote Sensing of Environment 69: 296-302.

Godwin, R.J., P.N. Wheeler, M.J. O'Dogherty, C.D. Watt and T. Richards, 1999. Cumulative mass determination for yield maps of non-grain crops in computers and electronics. Agriculture 23: 85-101.

Haboudane D., J.R. Miller, N. Tremblay, P.J. Zarco-Tejada and L. Dextraze, 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment 81: 416-426.

Killian, B., 2000. Economic aspects of precision farming: a German viewpoint. In *Proceedings* of the 5th International Conference on Precision Agriculture. ASA-CSA-SSSA, Madison, WI, USA. In press.

King, B.A., J.C. Stark and J.P. Taberna Jr., 1999. In season spatial variability of potato petiole nitrogen. In *Proceedings of 4th International Conference on Precision Agriculture*. ASA-CSSA-SSSA, Madison, WI, USA. pp. 55-65.

King, B.A., R.A. Brady, L.R. McCann and J.C. Stark, 1995. Variable rate water application through sprinkler irrigation. In *Site Specific Management for Agricultural Systems*. ASA-CSSA-SSSA. pp. 485-493.

Leblon B., J. McRobert, V. Vanderbilt and S. Th? riault, 2001. Defining hyperspectral reflectacen ratios for assessing potato crop nitrogen and chlorophyll status. In *Proceedings 23rd Canadian Symposium on Remote Sensing*, August 21-24. Sainte-Foy Qu? bec, Canada. pp.271-277.

Lichtenthaler H.K., A. Gitelson and M. Lang, 1996. Non-destructive determination of chlorophyll content f leaves of a green and an aurea mutant of tobacco by reflectance measurements. Journal of Plant Physiology 148: 483-489.

McKenzie, R.C., W. Chomistek, and N.F. Clark, 1989. Conversion of electromagnetic readings to saturated paste extract values in soils having different temperature, texture and moisture conditions. Canadian Journal of Soil Science 69: 25-32.

McKenzie, R.C., R.J. George, S.A. Woods, M.E. Cannon and D.L. Bennett, 1997. Use of the electromagnetic induction meter as a tool in managing salinization. Hydrology Journal. 5(1): 37-50.

Merzlyak, M.N., Gitelson, A.A., Chivkunova, O.B. and Y.R. Rakitin, 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening, Physiologia Plantarum, 106: 135-141.

Moran, M.S., Y. Inoue and E.M. Barnes, 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment 61: 319-346.

Osterveld, M. and C. Chang, 1980. Empirical relations between laboratory determinations of soil texture and moisture retention. Canadian Agricultural Engineering 21: 149-151.

Peñuelas J., J.A. Gamon, A.L. Fredeen, J. Merino and C.B. Field, 1994. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment 48: 135-146.

Peñuelas J., I. Filella, P. Floret, F. Munoz and M. Vilajeliu, 1995. Reflectance assessment of mite effects on apple trees. International Journal of Remote Sensing 16: 1647-1662.

Rawlins, S., G.C. Campbell, R.H. Campbell and J.R. Hess, 1995. Yield mapping of potato in site specific management for agricultural systems. ASA-CSSA-SSSA, Madison, WI, USA. pp. 59-68.

Rodvang, J., 1998. Site specific management of potatoes, 1997. The Groundwater Component, Irrig. Branch, Alberta Agriculture Food and Rural Development. July 1998.

Rodvang, J., 1999. Site specific management of potatoes, 1998. The Groundwater Component, Irrig. Branch, Alberta Agriculture Food and Rural Development. July 1999.

Rondeaux G., M. Steven and F. Baret, 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment 55: 95-107.

Schaupmeyer C., 1992. Potato Production Guide. Alberta Agriculture, Food and Rural Development. Agdex 258/20-8. 80 p.

Schepers J.S., T.M. Blackmer, W.W. Wilhelm and M. Resende, 1996. Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. Journal Plant Physiology 148: 523-529.

Schneider, S.M., R.A. Boyson, S. Han, R.C. Evans and R.H. Campbell, 1997. Mapping of potato yield and quality. In *Precision Agriculture* BIOS Scientific Publishers Ltd. pp. 253-261.

Sims, D.A. and J.A Gamon, 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment 81: 337-354.

Tindall, T.A., D.T. Westerman, J.C. Stark, J.C. Ojala and G.E. Kleinkopf, 1991. Phosphorus nutrition of potatoes. *Current Information Series #903*. Univ. of Idaho College of Agric. Co-op Extension System, USA. 4 pp.

Van Lorop, W., 1988. Determination of available phosphorus in arid and calcareous soils with Kelowna multiple-element extractant. Soil Science 146: 284-291.

Verhagen, J., 1997. Modelling soil and crop responses in a spatially variable field. In *Precision Agriculture*. BIOS Scientific Publishers Ltd. pp. 197-203.

Weisz, R., S. Fleischer and Z. Smilowitz, 1996. Site specific integrated pest management for high-value crops: impact on potato pest management. Journal of Economic Entomology. 89(2): 501-509.

Whitley, K.M., J.R. Davenport and S.R. Manley, 2000. Differences in nitrate leaching under variable and conventional nitrogen fertilizer management in irrigated potato systems. In *Proceedings of the 5th International Conference on Precision Agriculture*. ASA-CSSA-SSSA, Madison, WI, USA. In press.

Wooten, J.R., J.G. White, J.A. Tomasson and P.G. Thompson, 2000. Yield and quality monitor for sweet potato with machine vision. In *paper # 001123 ASAE Annual Meeting*. Milwaukee, WI, USA. July 9-12, 2000. In press.

PUBLICATIONS AND PRESENTATIONS ARISING FROM THE PROJECT

Woods, S.A. 2002. Soil salinity and salinity tolerance of crops. Guest lecture for University of Lethbridge (Geography 4760: Agricultural Soil Management). Lethbridge, AB. September 2002.

Woods, S.A. and Hingley, L.E. Soil and Water Agronomy Program extension presentation for SaskWater tour group. Brooks, AB. August 2002.

Woods, S.A. 2002. Soil salinity and salinity tolerance of crops. Salinity workshop for potato industry agronomists. Taber, AB. August 2002.

McKenzie, R.C., Woods, S.A. and Hingley, L.E. 2002. Phosphorus for potatoes. Presented at The Potato Growers of Alberta breakfast meeting. Taber, AB. March 2002.

McKenzie, R.C., Woods, S.A., Green, M., Goddard, T., Penny, D.C. and Schaupmeyer, C. 2002. Site specific observation of potatoes as a research technique. *In* Proceedings of the 39th Alberta Soil Science Workshop, Nisku, AB. February 2002. *In print*.

Woods, S.A., McKenzie, R.C. and Hingley, L.E. 2002. Phosphorus and compost on irrigated potato crops. *In* Proceedings of the 39th Alberta Soil Science Workshop, Nisku, AB. February 2002. *In print*.

McKenzie, R.C. and Woods, S.A. 2002. Potential of precision farming with potatoes. Precision Farming - a Global Perspective. A. Srnivasan Ed. Pub. By The Haworth.Press, Inc. Binghampton, NY. *In print*.

McKenzie, R.C., Woods, S.A. and Hingley, L.E. 2001. Site specific management of potatoes. *Presented at* Keys to the Future Conference and Tradeshow. Edmonton, AB. December 2001.

Woods, S.A., McKenzie, R.C. and Hingley, L.E. 2001. Phosphorus and compost on potatoes 1996-1999. *Presented at* The Annual Meeting of the Potato Growers of Alberta. Banff, AB. November 2001.

Woods, S.A., McKenzie, R.C. and Hingley, L.E. 2000. Phosphorus and compost on potatoes: research update. *Presented at* The Potato Growers of Alberta meeting. Taber, AB. December 2000.

McKenzie, R.C. 2000. Phosphorus and compost on potatoes. *Report submitted to* The Potato Growers of Alberta. October 2000.

McKenzie, R.C., Goddard, T.W., Woods, S.A., Rodvang, J., Hingley, L. and Harms, T. 2000. Site specific management of potatoes. *In* Proceedings of 5th International Conference on Precision Agriculture. Bloomington, MN. July 2000. CD-ROM.

McKenzie, R.C., Goddard, T., Penney, D.C. and Woods, S.A. 1999. Site specific management of potatoes. *Presented at* 1999 Annual Meetings of the American Society of Agronomy. Salt Lake City, UT. November 1999.

McKenzie, R.C. and Woods, S.A. 1998. Precision farming with potatoes. *Presented at* the Prairie Potato Conference. Brandon, MB. February 1998. 13 pp.

Rodvang, J., 1999. Site specific management of potatoes, 1998. The Groundwater Component, Irrig. Branch, Alberta Agriculture Food and Rural Development. July 1999.

Rodvang, J., 1998. Site specific management of potatoes, 1997. The Groundwater Component, Irrig. Branch, Alberta Agriculture Food and Rural Development. July 1998.

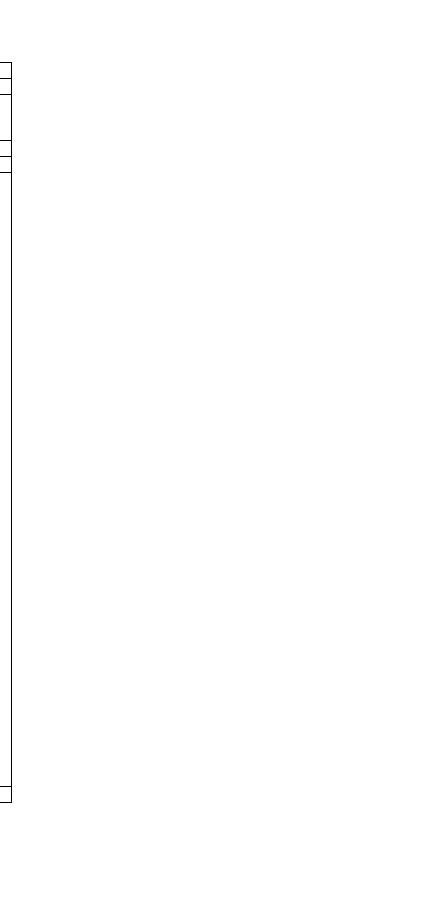
APPENDICES

Appendices I to VIII list the raw data collected from the grid sample sites, including soil characteristics, plant tissue nutrients, rain gauge readings and hand-dug tuber sample attributes. Appendix IX provides the data from the 1999 Vauxhall soil salinity site. Appendix X is the remote sensing document provided by A. Smith.

I. 1996 Fincastle Grid Sample Data

1996 Fincast	e Site (FL1625))															
Position Data Moisture					Soil Cha	racteristics	6	Petiole Nutrient Contents									
Site	Easting	Northing	Irrigation +	Consumpt	Clay		pН		NO ₃ -N		Р			Ca			
	(m)	(m)	Precipitation	ive Use	(9	%)		(%)			(%)			(%)			
			(mm)	(mm)													
Info 🗳			DR					DT^1	DT^2	DT^3	DT^1	DT^2	DT^3	DT^1	DT^2	DT^3	
Depth (cm)				(0-50)	(0-60) (60-90)		(0-90)										
1	434777.637	5527480.426	298	350	11	14	7.4	0.96	0.20	0.18	0.48	0.16	0.11	1.36	1.49	1.78	
2	434781.031	5527683.803	321	352	13	18	7.6	0.08	0.03	0.06	0.54	0.34	0.18	0.87	1.08	1.55	
3	434783.654	5527839.738	328	379	17.5	25	7.7	0.53	0.25	0.00	0.53	0.31	0.11	1.03	1.10	1.21	
4	434786.785	5528039.644	306	379	23	23	8.2	1.29	0.34	0.01	0.27	0.12	0.06	1.43	1.22	1.27	
5	434973.944	5528031.152	295	333	23	28	7.7	1.48	0.38	0.12	0.56	0.22	0.12	1.16	1.02	1.21	
6	434971.236	5527835.103	307	389	12.5	19	7.4	1.15	0.59	0.14	0.51	0.23	0.13	1.23	1.59	1.59	
7	434969.571	5527672.749	289	344	11	17	7.3	0.98	0.31	0.07	0.49	0.15	0.13	1.34	1.71	1.73	
8	434965.784	5527471.701	315	379	9 10		7.3	0.90	0.01	0.02	0.52	0.22	0.18	1.09	1.22	1.49	
Means			307	363	15	19	7.6	0.92	0.26	0.08	0.49	0.22	0.13	1.19	1.30	1.48	

Additional Information, as follows.


DR – June 28 – August 16, 1996

DT¹ – July 4, 1996 DT² – July 30, 1996 DT³ – August 20, 1996

II. 1996 Hays Grid Sample Data

1996 Hays Site	,		Maint		Call Ch			Dettel	NT	0						
~	Position Data	Moisture Soil Characteristics				N	Petiole Nutrient Contents									
Site	Easting	Northing	Irrigation +	Consumpti		lay	PH		NO ₃ -N			Р			Ca	
	(m)	(m)	Precip.	ve Use	(%)			(%)			(%)			(%)	
* * *			(mm)	(mm)				1			1		2	1		
Info 🗳			DR					DT^1	DT^2	DT^3	DT^1	DT^2	DT^3	DT^1	DT^2	DT^3
Depth (cm)				(0-100)	(0-60)	(60-90)	(0-30)									
1	438902.045	5537073.788	359	356	12	35	5.6		1.19	0.34	0.38	0.19	0.07	0.9	1.0	1.2
2	438902.672	5537123.641	384	392	10	9	6.6	2.00	0.59	0.06	0.41	0.17	0.07	0.9	1.1	1.8
3	438903.484	5537181.997	321	331	8	7	6.6	2.09	0.37	0.05	0.44	0.18	0.06	0.9	1.2	2.0
4	438904.003	5537237.907	398	384	10	21	6.2	2.38	1.47	0.35	0.46	0.23	0.07	1.0	1.1	1.4
5	438904.662	5537293.805	391	383	17	23	6.5	2.32	1.75	0.71	0.42	0.22	0.07	0.8	0.9	1.4
6	438905.223	5537351.503	371	375	11	10	7.2	2.48	1.56	0.43	0.50	0.21	0.07	0.8	0.9	1.5
7	438906.604	5537417.929	372	383	10	17	6.3	1.86	0.95	0.33	0.44	0.13	0.07	1.0	1.2	1.7
8	438907.019	5537506.409	390	406	9	7	7.1	1.48	0.71	0.08	0.44	0.10	0.07	1.0	1.4	1.7
9	438907.631	5537568.681	423	446	10	9	6.4	1.55	0.67	0.14	0.39	0.11	0.07	0.9	1.3	1.7
10	438908.385	5537626.645	401	390	9	9	6.3	1.59	0.66	0.12	0.44	0.12	0.07	1.0	1.3	1.6
11	438908.782	5537679.863	390	398	11	17	6.6	1.96	1.04	0.40	0.43	0.12	0.08	1.0	1.2	1.5
12	438909.163	5537733.54	373	386	36	48	7.5	2.35	1.25		0.30	0.16		1.1	1.1	
13	438909.557	5537789.555	331	373	20	26	7.6	2.07	1.08	0.32	0.25	0.13	0.06	1.1	1.5	1.8
14	438986.812	5537755.953	342	352	44	47	7.8	2.13	1.24	0.84	0.35	0.14	0.07	1.0	1.3	1.8
15	438986.256	5537697.291	358	383	14	31	7.2	2.02	0.88	0.38	0.48	0.16	0.08	1.0	1.2	1.5
16	438985.613	5537636.566	302	344	18	40	7.2	2.26	1.35	0.47	0.49	0.19	0.07	0.9	1.1	1.6
17	438984.958	5537568.789	366	363	9	7	7.2	1.70	0.97	0.37	0.50	0.16	0.08	0.8	1.1	1.7
18	438983.743	5537474.191	368	354	11	14	7.1	1.76	0.69	0.16	0.47	0.12	0.08	0.7	1.1	1.5
19	438982.247	5537346.354	365	374	14	26	7.1	2.07	0.00	0.41	0.50	0.00	0.08	0.9	0.0	1.5
20	438981.503	5537250.395	354	381	9	8	7.3	2.02	0.64	0.35	0.49	0.19	0.07	0.9	1.1	1.5
21	438980.989	5537187.362	358	363	9	7	7.8	1.53	0.23	0.03	0.34	0.13	0.07	0.9	1.2	1.6
22	438980.163	5537128.009	370	384	8	6	8	1.62	0.49	0.19	0.35	0.13	0.06	0.9	1.0	1.6
23	438979.531	5537070.395	334	355	10	13	6.2	1.80	1.30	0.40	0.39	0.20	0.07	1.0	0.8	1.5
24	439058.761	5537122.957	348	387	9	8	6.1	2.01	0.75	0.27	0.38	0.11	0.06	0.9	1.2	1.7
25	439059.473	5537193.538	373	376	7	11	5.9	2.33	0.75	0.11	0.45	0.15	0.07	1.2	1.4	1.7
26	439060.845	5537292.797	399	404	13	38	5.9	2.08	0.84	0.29	0.44	0.13	0.06	0.9	1.3	1.7
27	439061.772	5537447.533	393	402	16	29	6.7	2.16	1.19	0.71	0.48	0.14	0.08	1.0	1.0	1.5
28	439063.901	5537597.375	353	379	8	23	7	2.09	1.24	0.30	0.41	0.12	0.07	0.9	1.3	1.6
29	439065.186	5537668.442	373	415	7	6	6.9	2.09	0.84	0.22	0.41	0.10	0.08	1.0	1.2	1.7
30	439066.187	5537731.877	330	362	8	7	6.4	2.34	1.51	0.29	0.49	0.15	0.07	1.0	1.3	1.7
31	439123.012	5537670.624	382	400	5	25	6.7	1.82	0.70	0.10	0.45	0.12	0.07	1.0	1.2	1.6
32	439121.895	5537594.491	378	410	7	10	6.5	1.92	0.69	0.17	0.42	0.09	0.07	1.0	1.3	1.5
33	439119.689	5537422.167	344	410	19	34	6.4	2.20	1.07	0.52	0.43	0.10	0.07	0.9	1.2	1.7
34	439117.792	5537256.015	382	438	15	34	6.6	1.92	0.89	0.31	0.46	0.13	0.07	0.9	1.2	1.6
35	439117.272	5537156.568	335	353	12	16	6.8	2.06	1.19	0.38	0.39	0.12	0.06	0.8	1.1	1.7
36	439169.852	5537252.858	350	378	12	29	6.3	2.31	1.02	0.48	0.38	0.10	0.06	0.8	1.4	1.6
37	439171.477	5537400.514	378	395	29	30	7.6	2.09	0.99	0.53	0.31	0.17	0.07	1.0	1.1	1.5
38	439174.2	5537609.394	336	373	9	10	6.8	2.32	1.30	0.45	0.45	0.11	0.06	1.0	1.4	1.9
39	439218.719	5537469.349	357	385	16	50	6.1	2.21	1.23	0.75	0.35	0.12	0.07	1.0	1.2	1.5
40	439218.169	5537376.241	351	391	13	48	6.7	2.42	1.04	0.70	0.42	0.12	0.07	1.0	1.2	1.5
Means			365	383	13	21	6.8	2.04	0.96	0.35	0.42	0.14	0.07	0.9	1.2	1.6

Means \clubsuit Additional Information, as follows.DR – June 17 – September 09, 1996 DT^1 – July 3, 1996 DT^2 – July 30, 1996 DT^3 – August 20, 1996

III. 1997 Fincastle Grid Sample Data

1997 Fincastle	castle Site (Russet Burbank)																								
	Position Data	,	Moisture		Soil Charac	teristics						Petiole	Nutrient	Content	s						Hand-S	ampled Tuber	· Data		
Site	Easting	Northing	Irrigation +	Consumpti	Cl	ay	CaCO ₃	NO	D ₃ -N	PO ₄ -P	K		NO ₃ -N			Р			K		Total	Medium	Mean	Specific	Chipping
	(m)	(m)	Precipitation	ve Use	(%	6)	(%)	(p	pm)	(ppm)	(ppm)		(%)			(%)			(%)		Yield	Tuber	Tuber	Gravity	Score
T.C.A			(mm)	(mm)		1							57		200	5	5.53	200	577	5.03	(t/ha)	Yield (t/ha)	Weight (g)		
Info			DR	(0.100)	(0.10)	(10,00)	(0.00)	(0.10)	(10.00)	Kel	Kel	DT ¹	DT^2	DT '	DT ¹	DT^2	DT 3	DT	DT^2	DT 3					
Depth (cm)				(0-100)	(0-60)	(60-90)	(0-30)	(0-60)	(60-90)	(0-15)	(0-30)	1.00					0.4.0					10	1.7.0.0	4.004	
Bl	430474.374	5523475.42	388	457.8	10		1.05	3.5			164.0	1.00	0.90	0.21	0.27	0.15	0.10	6.0			47	40	153.9	1.084	6.5
Cl Dl	430474.374 430474.374	5523407.42 5523339.42	511 429	616.2 609	17 24		1.85	4.9		99	330.5 250.0	0.87	0.41 1.73	$0.06 \\ 0.98$	0.26 0.29	0.18 0.25	0.08 0.15	6.3	7.7	6.6	32 48	28 43	122.2 124.4	1.080	6.0 7.5
E1	430474.374	5523271.42	429 346	609 467.5	24 9			22.1 3.3		99	230.0 144.0	1.43 0.70	0.53	0.98	0.29	0.25	0.15				48 60	43 40	124.4	1.087 1.086	7.5 6.5
FI	430474.374	5523203.42	421	530.2	10			3.5 7.7			144.0	0.70	0.33	1.69	0.57	0.31	0.19	6.2	7.7	6.9	66	40 57	194.8	1.080	0.3 7.5
Gl	430474.374	5523135.42	463	578.1	9			12.8			239.0	0.89	0.93	1.09	0.55	0.40	0.29	0.2	/./	0.9	57	50	194.8	1.089	6.0
H1	430474.374	5523067.42	449	548.4	8			2.2			186.0	0.36	0.20	0.17	0.66	0.57	0.36				58	36	109.7	1.087	6.5
111 11	430474.374	5522999.42	374	456	8			5.7			243.5	1.21	0.81	0.72	0.62	0.52	0.34	6.4	8.1	7.3	61	47	198.7	1.083	8.0
J1	430474.374	5522931.42	372	432.5	9			16.8		152	257.5	1.95	1.58	0.87	0.55	0.50	0.29	0	0.1	110	49	30	157.1	1.077	7.5
A2	430542.374	5523543.42	408	496.1	7	7		2.9	2.6		186.0	1.26	1.12	0.15	0.41	0.17	0.18				57	35	221.3	1.086	7.5
B2	430542.374	5523475.42	435	573.5	8			4.8		101	290.0	0.69	0.45	0.30	0.57	0.45	0.30	6.4	7.6	6.5	66	46	144.3	1.088	7.5
C2	430542.374	5523407.42	518	602.2	20			4.2			329.5	1.26	1.10	0.28	0.48	0.55	0.23				8	4	40.4	1.021	6.0
D2	430542.374	5523339.42	420	572	12			7.2			227.0	0.69	1.35	1.40	0.56	0.54	0.33				66	41	124.9	1.081	5.0
E2	430542.374	5523271.42	354	485	10			7.4			181.5	0.83	0.66	1.67	0.48	0.40	0.29	6.3	7.1	6.2	60	48	120.1	1.078	5.5
F2	430542.374	5523203.42	441	538.5	8			8.9		66	185.5	0.71	0.85	1.61	0.48	0.55	0.33				58	32	118.7	1.084	6.5
G2	430542.374	5523135.42	446	595.1	9			10.7			188.5	0.75	0.88	1.66	0.61	0.55	0.37				67	44	135.4	1.085	6.5
H2	430542.374	5523067.42	428	525.9	7			9.4		57	150.5	0.37	0.29	0.19	0.57	0.40	0.22	6.0	7.2	6.5	66	41	143.5	1.086	7.0
12 D	430542.374	5522999.42	420	554.8	8			24.7			330.5	0.94	0.89	0.83	0.63	0.59	0.34				68	45	105.6	1.084	6.5
J2 K2	430542.374 430542.374	5522931.42 5522863.42	375 402	460.1	9 7			7.8			199.5 204.0	1.30	1.38 1.78	1.34	0.62 0.61	0.55 0.5	0.30	65	70	7.2	57	47 47	140.4 169.2	1.081	8.0 6.0
K2 A3	430610.374	5523543.42	402 367	492.6 496.9	9	20		6.2 12.2	20.6	107	204.0 429.0	2.36 1.69	2.28	1.74 1.53	0.61	0.5	0.43 0.22	6.5	7.8	7.3	66 65	47	228.8	1.074 1.081	8.0 8.0
B3	430610.374	5523475.42	417	563.3	8	8		3.5	4.3	107	210.5	0.72	0.57	0.10	0.42	0.50	0.22				54	29	129.7	1.081	6.5
C3	430610.374	5523407.42	461	608.8	19	34		6.6	3.3		356.5	1.07	1.45	1.00	0.50	0.52	0.25	6.4	8.1	7.0	48	33	115.2	1.078	0.5 7.0
D3	430610.374	5523339.42	470	620.9	18	24		6.6	3.6		304.5	0.78	1.75	1.17	0.42	0.41	0.29	0.4	0.1	7.0	62	43	158.3	1.082	6.0
E3	430610.374	5523271.42	382	475.4	7	9		3.1	1.8	78	171.5	0.61	1.03	0.67	0.47	0.49	0.28				62	45	153.7	1.087	6.5
F3	430610.374	5523203.42	453	561.3	8	10		1.7	1.7		182.5	0.39	0.31	0.39	0.40	0.36	0.15	6.1	7.4	5.8	67	49	171.5	1.090	6.5
G3	430610.374	5523135.42	452	536.7	9	8		7.7	3.2		255.0	0.43	0.47	0.74	0.56	0.55	0.34				70	46	120.9	1.087	7.0
H3	430610.374	5523067.42	453	542.4	7	8		8.3	5.1		238.5	0.50	0.08	0.20	0.60	0.51	0.34				69	55	133.2	1.093	7.0
13	430610.374	5522999.42	402	503.8	9	10		7.9	7.8		258.5	1.16	0.56	0.47	0.67	0.56	0.31	6.4	8.0	6.2	57	53	135.6	1.087	7.5
J3	430610.374	5522931.42	456	578.8	13	14		26.6	6.9		169.5	1.93	1.59	1.24	0.59	0.53	0.34				46	27	149.6	1.075	6.5
K3	430610.374	5522863.42	453	530.3	11	11		6.4	9.0	152	244.0	2.35	1.90	1.61	0.60	0.52	0.37				59	37	120.4	1.077	5.5
A4	430678.374	5523543.42	431	535.3	7	8		3.5	3.3		205.5	0.86	0.71	0.53	0.51	0.59	0.43		7.1	6.3	56	41	122.3	1.090	7.5
B4	430678.374	5523475.42	434	539.5	6	6		3.1	2.8	0.0	196.0	0.62	0.35	0.27	0.53	0.59	0.42				71	54	129.8	1.090	8.5
C4	430678.374	5523407.42	441	556.8	11	10		16.4	13.3	98	267.0	1.70	1.58	1.37	0.35	0.47	0.23	65	8.0	65	64	47	145.2	1.081	7.0
D4 E4	430678.374 430678.374	5523339.42 5523271.42	424 384	553.2 490.5	10 7	17		4.6 3.0	4.6 2.8		269.5 271.5	0.76 0.37	1.12 0.33	1.41 0.29	0.55 0.51	0.62 0.54	0.38 0.27	6.5	8.0	6.5	66 71	58 55	143.3 138.7	1.087 1.086	6.0 5.5
F4	430678.374	5523203.42	384 412	490.5 530.2	7	7		3.0 4.6	2.8 3.6		2/1.5 246.0	0.37	0.33	0.29	0.51	0.54	0.27				61	55 44	95.7	1.086	5.5 6.0
G4	430678.374	5523135.42	412 414	515.6	8	9		4.0	5.0 13.6		240.0 367.0	0.34	0.97	0.92	0.65	0.62	0.39	6.4	7.4	6.1	70	44 60	114.6	1.085	0.0 7.0
H4	430678.374	5523067.42	458	558.2	9	10		5.2	6.1		259.5	0.60	0.40	0.83	0.57	0.33	0.28	0.7	7.7	0.1	73	52	100.7	1.091	7.0
I4	430678.374	5522999.42	468	570.1	7	7	0.2	6.9	5.1	78	256.0	0.63	0.70	0.69	0.52	0.53	0.30				52	39	87.1	1.080	5.5
J4	430678.374	5522931.42	438	555.6	11	10		6.4	2.7		156.5	1.34	0.85	1.06	0.29	0.23	0.12	6.4	7.4	6.4	39	33	128.1	1.087	6.5
K4	430678.374	5522863.42	448	562.1	16	42		9.1	22.1		193.0	1.34	2.03	1.56	0.50	0.50	0.27				58	45	112.8	1.087	8.5
A5	430746.374	5523543.42	369	464.4	7	6		3.4	3.8	94	208.5	0.67	0.49	0.11	0.63	0.54	0.32				50	33	75.0	1.081	7.5
B5	430746.374	5523475.42	425	527.6	10	16	0	4.3	18.0		229.5	0.87	0.66	1.51	0.62	0.42	0.39	6.6	6.8	6.3	61	46	109.2	1.092	6.5
C5	430746.374	5523407.42	429	559.4	14	11		6.5	8.8		261.5	1.41	1.32	1.05	0.40	0.30	0.21				56	39	132.8	1.088	7.5
D5	430746.374	5523339.42	429	573.6	10	28		3.2	7.4		168.0	0.15	0.52	1.50	0.61	0.48	0.44				72	60	116.0	1.090	7.0
E5	430746.374	5523271.42	424	552.3	8	21		2.0	4.5	207	173.5	0.24	0.36	1.03	0.65	0.45	0.51	6.3	6.7	7.0	81	65	100.7	1.089	6.5
P5	430746.374	5523203.42	481	647.8	12	30		10.1	12.2	205	454.5	0.32	0.07	0.03	0.64	0.54	0.43				49	21	65.6	1.084	6.5
G5	430746.374	5523135.42	429	568.7	26	36		17.0	30.7		145.5	1.04	0.85	1.12	0.42	0.24	0.20	60	7 1	62	48	35	116.4	1.082	6.5
H5 15	430746.374	5523067.42	469	557.7	13	16		3.6	2.3		250.5	0.13	0.05	0.07	0.64	0.59	0.51	6.0	7.1	6.3	54	32	81.5	1.090	6.5 7.0
15 15	430746.374 430746.374	5522999.42 5522931.42	462 437	553.3 553.1	13 10	15 15		3.3 1.7	2.6 2.3	115	188.0 172.5	0.15 0.13	0.04 0.03	0.18 0.23	0.62 0.62	0.63 0.56	0.40 0.36				61 76	42 60	91.3 133.0	1.084 1.087	7.0 5.5
K5	430746.374	5522863.42	382	546.1	10	22	0.1	2.2	2.5	115	300.5	0.13	0.03	0.23	0.62	0.58	0.30	6.0	7.2		48	35	109.1	1.087	5.5 7.0
	+10.0F100	5522005.42								400										-					
Means	nformation as fo		427	541.2	11	15	0.54	7.5	7.2	108	236.1	0.89	0.85	0.82	0.53	0.47	0.31	6	7.5	6	59	43	129.4	1.084	6.7

Means ♣ Additional Information, as follows. DR – June 24 – September 18, 1997 Kel – Kelowna method DT¹ – July 7, 1997 DT² – July 24, 1997 DT³ – August 13, 1997

IV. 1997 Hays Grid Sample Data

998 Hays Si	te (Snowden)																									
	Position Data	-	Moisture	-	Soil Char	acteristics							Petiole N	Nutrient C	Contents							Hand-Sar	npled Tuber	• Data		
Site	Easting (m)	Northing (m)	Irrigation + Precipitation (mm)	Consumpti ve Use (mm)		'lay %)	CaCO ₃ (%)		O3-N ppm)	PO ₄ -P (ppm)	k (pp:			NO ₃ -N (%)			P (%)			K (%)		Total Yield (t/ha)	Medium Tuber Yield (t/ha)	Mean Tuber Weight (g)	Specific Gravity	Chipping Score
Info💣			DR							Kel	AA	Kel	DT ¹	DT^2	DT ³	DT ¹	DT^2	DT^{3}	DT ¹	DT^2	DT^{3}			(C)/		
Depth (cm)				(0-100)	(0-60)	(60-90)	(0-30)	(0-60)	(60-90)	(0-15)	(0-30)	(0-30)														
D1	438562.2	5537593.3	432	525	8	5		3.8	2.5	17	176.9	119	1.25	0.21	0.06	0.48	0.13	0.09	6.2	7.3		61	61	120.4	1.085	50.5
E1	438562.2	5537525.3	428	599	22	42		3.9	1.7	20	243.8	155	1.69	0.81	0.26	0.38	0.12	0.09			6.6	48	47	109.8	1.084	44.5
F1	438562.2	5537457.3	443	562	11	28		4.1	2.9	13	123.6	74	1.45	0.83	0.13	0.49	0.12	0.10				56	55	111.2	1.088	44.5
G1	438562.2	5537389.3	442	577	13	35		5.0	1.7	15	136.1	87	1.56	0.29	0.25	0.39	0.13	0.10				51	50	121.8	1.084	44
H1	438562.2	5537321.3	433	574	17	30		2.5	2.3	17	127.5	81	1.70	0.51	0.10	0.31	0.15	0.10	6.1	6.9	5.8	48	47	148.3	1.085	52
I1	438562.2	5537253.3	426	525	8	25		3.6	2.2	15	127.5	76	1.52	0.87	0.22	0.42	0.15	0.11				54	53	105.8	1.084	48
C2	438630.2	5537661.3	411	559	30	29		6.1	1.4	10	163.5	91	2.07	0.63	0.34	0.27	0.11	0.09				56	55	132.7	1.090	50.5
D2	438630.2	5537593.3	424	545	6	14	0.05	8.9	3.9	13	172.5	111	1.70	0.99	0.18	0.37	0.12	0.10		0.4		56	52	143.7	1.082	51.5
E2	438630.2	5537525.3	427	569	18	38	0	3.5	1.5	16	335.4	206	1.94	0.51	0.27	0.30	0.14	0.09	6.5	8.4	7.4	61	59	158.6	1.083	52
F2	438630.2	5537457.3	407	528 506	22	41	0	8.7	1.5	13	151.9	99 85	1.50	0.98	0.19 0.37	0.33	0.12	0.10				44	44	134.2	1.089	54.5 43.5
G2 H2	438630.2 438630.2	5537389.3 5537321.3	444 453	596 583	31 15	43 36		4.2 3.1	1.5 1.1	12 12	136.6 123.5	85 69	1.83 1.82	0.76 1.17	0.37	0.25 0.34	0.12 0.20	0.09 0.11	6.4	7.5	5.1	45 52	45 51	123.1 150.1	1.088 1.085	43.5
112 12	438630.2	5537253.3	396	480	6	4	0	6.5	4.7	12	125.5	60	0.92	0.15	0.27	0.34	0.20	0.11	0.4	7.5	5.1	32	36	130.1	1.083	43.5
12 J2	438630.2	5537185.3	415	498	5	4	0	5.4	1.3	15	102.6	64	1.12	0.13	0.02	0.50	0.14	0.12				39	39	130.6	1.083	39.5
B3	438698.2	5537729.3	438	574	33	40	1.35	3.3	1.5	13	178.0	90	1.12	0.52	0.01	0.23	0.10	0.12				40	38	97.8	1.005	51.5
C3	438698.2	5537661.3	450	547	11	37	1.55	5.3	2.2	14	137.5	76	1.36	0.46	0.19	0.25	0.10	0.09	6.3	7.0	6.1	55	54	124.5	1.088	46
D3	438698.2	5537593.3	415	559	21	45		3.2	1.5	13	132.4	72	1.15	0.61	0.21	0.31	0.11	0.09	0.2		0.11	56	52	177.5	1.085	50
E3	438698.2	5537525.3	378	497	10	20	0	9.4	1.6	18	298.6	176	1.75	0.93	0.15	0.34	0.13	0.09				68	61	179.5	1.082	44
F3	438698.2	5537457.3	390	485	7	5	-	4.6	2.2	20	109.9	65	0.35	0.06	0.01	0.46	0.14	0.10	6.2	6.6	6.3	47	46	109.2	1.087	45.5
G3	438698.2	5537389.3	415	501	8	8		2.7	0.5	15	111.8	75	1.07	0.16	0.03	0.31	0.10	0.11				49	48	154	1.087	45.5
H3	438698.2	5537321.3	389	506	6	7		3.4	7.1	16	130.5	93	1.29	0.29	0.06	0.45	0.15	0.10				47	45	121.2	1.084	41.5
I3	438698.2	5537253.3	438	564	27	32		2.1	1.4	9	130.6	78	1.45	0.71	0.20	0.36	0.15	0.10	6.3	5.8	4.2	58	57	136.6	1.088	47
J3	438698.2	5537185.3	369	504	6	6	0.85	2.7	1.9	24	131.4	83	1.23	0.36	0.09	0.42	0.15	0.11				50	50	118.8	1.080	49.5
K3	438698.2	5537117.3	450	587	14	43		5.4	3.8	13	86.5	59	1.41	0.51	0.26	0.45	0.17	0.11				56	55	136.3	1.088	50
a4	438766.2	5537763.3	419	551	15	31	1.2	3.4	1.4	12	159.6	97	1.64	0.55	0.27	0.22	0.11	0.10				50	47	162.7	1.091	47
b4	438766.2	5537695.3	405	548	28	29		4.8	1.2	15	210.4	111	1.87	0.90	0.32	0.24	0.10	0.09	6.1	6.8	7.0	46	40	149.7	1.085	45
c4	438766.2	5537627.3	379	522	15	44		2.4	1.5	15	110.1	72	1.53	0.94	0.35	0.32	0.12	0.09				66	65 52	134.2	1.090	47.5
d4	438766.2	5537559.3	397	541	20	40		3.0	1.5	13	191.1	107	1.92	1.02	0.25	0.26	0.11	0.09	61	7.2	60	58	52 57	168	1.087	47
e4 f4	438766.2 438766.2	5537491.3 5537423.3	382 388	467 479	8	18 24		2.4 4.3	1.6 1.0	13 15	125.1 292.5	85 155	1.31 1.85	0.16 0.89	0.05 0.01	0.38 0.29	0.12 0.10	0.09 0.11	6.1	7.3	6.9	58 46	57 43	150.2 146.4	1.085 1.086	42 46.5
14 g4	438766.2	5537355.3	373	529	23	24 39		3.8	1.0	13	100.9	67	1.85	0.89	0.01	0.29	0.10	0.11				40	43	136.1	1.086	39.5
h4	438766.2	5537287.3	409	597	30	43		2.3	1.7	12	132.8	77	1.42	1.06	0.09	0.26	0.10	0.10	6.1	7.1	5.5	55	53	135.2	1.080	59.5
i4	438766.2	5537219.3	409	524	8	18		3.3	1.5	10	133.9	88	1.76	0.61	0.42	0.42	0.10	0.12	0.1		0.0	55	55	155.2	1.085	44.5
i4	438766.2	5537151.3	399	513	7	11		2.4	0.7	8	81.8	52	1.29	0.46	0.42	0.44	0.12	0.12				46	44	145.1	1.084	44
k4	438766.2	5537083.3	400	510	8	7		6.6	2.1	12	94.5	57	1.86	0.89	0.28	0.43	0.20	0.13	6.2	6.2	4.6	51	50	122	1.083	47
A5	438834.2	5537797.3	402	516	19	27		2.7	2.4	11	232.2	127	1.97	0.61	0.22	0.20	0.13	0.08				53	53	154.1	1.086	46
B5	438834.2	5537729.3	441	568	30	37		4.5	1.8	16	216.7	122	2.13	0.92	0.25	0.18	0.11	0.08				56	55	153.3	1.089	48
C5	438834.2	5537661.3	432	555	9	12		5.1	1.7	15	136.2	87	1.17	0.14	0.02	0.36	0.12	0.09	6.3	7.2	7.0	40	40	124.5	1.082	48
D5	438834.2	5537593.3	410	539	15	45	0.7	3.2	2.8	14	154.9	92	1.60	0.16	0.03	0.39	0.13	0.11				47	46	143.1	1.084	48
E5	438834.2	5537525.3	394	478	10	12		5.6	3.0	12	106.4	64	1.83	0.16	0.07	0.5	0.19	0.12				54	54	177.1	1.086	46.5
F5	438834.2	5537457.3	375	489	11	38		9.9	2.8	14	112.0	68	1.83	0.23	0.11	0.42	0.14	0.12	6.2	6.8	6.3	61	55	140.1	1.087	38.5
G5	438834.2	5537389.3	380	546	18	40		2.6	2.8	11	121.5	71	1.55	0.40	0.10	0.42	0.13	0.12				48	48	121.4	1.082	45.5
H5	438834.2	5537321.3	396	516	12	36	0	6.1	2.7	14	134.0	82	1.49	0.65	0.27	0.45	0.15	0.14		-	4.0	48	46	138.6	1.086	42.5
15 15	438834.2	5537253.3	412	573	19	38	0	3.1	1.9	11	103.1	69	1.58	0.77	0.45	0.43	0.16	0.12	6.2	7.0	4.9	65	59	159.1	1.085	39.5
J5 15	438834.2	5537185.3	424	535	8	25		2.6	2.1	13	113.1	71	1.13	0.25	0.05	0.44	0.16	0.12				44	43	133.5	1.090	46
K5	438834.2	5537117.3	448	590 591	19	32		2.8	3.0	10	107.4	67 120	1.13	0.53	0.02	0.36	0.13	0.13	64	76	61	32	31	98.5 155.5	1.086	47 43.5
	430034.2	5557047.5					0.4																			4 5.3 46.3
L5 Means	438834.2	5537049.3		445 412	445 591	445 591 27	445 591 27 45	445 591 27 45	445 591 27 45 2.7	445 591 27 45 2.7 1.7	445 591 27 45 2.7 1.7 15	445 591 27 45 2.7 1.7 15 226.0	445 591 27 45 2.7 1.7 15 226.0 120	445 591 27 45 2.7 1.7 15 226.0 120 1.29	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91 0.31	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91 0.31 0.47	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91 0.31 0.47 0.22	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91 0.31 0.47 0.22 0.13	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91 0.31 0.47 0.22 0.13 6.4	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91 0.31 0.47 0.22 0.13 6.4 7.6	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91 0.31 0.47 0.22 0.13 6.4 7.6 6.1	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91 0.31 0.47 0.22 0.13 6.4 7.6 6.1 53	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91 0.31 0.47 0.22 0.13 6.4 7.6 6.1 53 50	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91 0.31 0.47 0.22 0.13 6.4 7.6 6.1 53 50 155.5	445 591 27 45 2.7 1.7 15 226.0 120 1.29 0.91 0.31 0.47 0.22 0.13 6.4 7.6 6.1 53 50 155.5 1.082

Additional Information, as follows.

DR – June 23 – September 4, 1997 Kel – Kelowna method

AA = Ammonium Acetate methodDT¹ = July 3, 1997DT² = July 23, 1997DT³ = August 12, 1997

V. 1998 Fincastle Grid Sample Data

1998 Fincastle	Site (Russet Bur	bank)																									
Ţ	Position Data	,	Moisture				Soil Ch	aracteristic	s						Petiol	e Nutrien	nt Conter	nts					Hand-Sa	mpled Tuber	Data		
Site	Easting	Northing	Irrigation +	Consumpti	Availal	ble Water	0	Clay	CaCO ₃	NO	D ₃ -N	PO ₄ -P]	K		NO ₃ -N			Р		K		Total	Medium	Mean	Specific	French
	(m)	(m)	Precipitation	ve Use	((%)	((%)	(%)	(p	pm)	(ppm)	(pp	om)		(%)		((%)		(%)		Yield	Tuber	Tuber	Gravity	Fry
			(mm)	(mm)																			(t/ha)	Yield	Weight (g)		Score
								r																(t/ha)			
Info			DR									Kel	AA	Kel	DT ¹	DT^2	DT '	DT ¹ I	DT^2 D	T ³ DT ¹	DT^2	DT '					
Depth (cm)				(0-100)	(0-60)	(60-100)	(0-60)	(60-90)	(0-30)	(0-60)	(60-90)	(0-15)	(0-30)	(0-30)													
A1	430812.375	5523543.126	361	363.2	34	64	10	11	0.20	1.8	1.1	32.5	125.5	148.6	0.86					13 6.5		5.3	39	27	141.0	1.066	9.3
B1 C1	430811.632	5523475.175	379	391.4	31	52	10	28		1.4	5.3	20.8		152.4	1.20	1.05	0.95			09	6.4	4.8	42	27	96.1	1.071	9.3
C1 D1	430810.417	5523407.056	382 382	395.3	122	88	12 6	8 7		2.2 0.9	1.0	40.9 34.0		258.8	1.26	1.71	1.21 0.22			14 7.4 12 5.7	8.2	8.5 3.4	42 44	30	139.4	1.074	9.5 8.8
D1 E1	430809.695 430808.867	5523339.225 5523271.117	382 389	376.7 387.5	68	177 170	8	8		0.9 7.1	1.5	34.0 39.8		129.4 163.6	0.19	0.40	1.57			12 5.7 21 6.7	5.2	5.4 6.0		33 34	105.8 134.7	1.075 1.084	0.0 9.3
F1	430807.816	5523203.228	573	587.5	83 165	203	0 10	21		1.1	3.5 0.9	34.8		105.0	0.61 0.51	1.66 0.62	0.52			10 6.0	7.1 5.1	4.6	46 30	22	110.4	1.064	9.3 9.0
G1	430806.907	5523135.176	396	360.2	63	111	8	7	2.90	0.9	1.2	39.3	92.5	121.0	0.62	1.11	1.28			10 0.0 15 6.0	4.6	5.3	45	31	128.1	1.003	8.5
H1	430806.02	5523067.21	421	425.9	56	63	11	12	2.70	1.4	1.7	22.8	12.5	116.8	0.86	1.04	1.20			13 0.0 17 6.2	4.7	5.5	37	24	138.1	1.075	8.8
II I1	430805.056	5522999.311	432	436.0	78	114	9	8		4.2	9.4	47.0		94.6	0.80	0.36	0.65			17 0.2 13 5.9	5.3	5.3	35	24	112.5	1.067	8.3
J1	430804.199	5522931.362	432	448.3	110	191	10	17		1.2	4.3	57.8		114.0	0.44	0.98	0.92			20 6.2	5.4	6.5	39	35	175.8	1.073	6.8
K1	430803.338	5522863.337	434	461.5	95	108	24	27		2.7	3.9	62.0		157.8	1.67	1.82	1.63			20 6.5	7.5	7.1	55	47	175.0	1.073	7.8
A2	430885.597	5523576.237	289	306.5	-4	37	13	10		2.4	3.0	19.7		131.2	2.26	2.02	1.87			13 7.0	5.7	6.0	37	32	172.6	1.074	8.3
B2	430884.757	5523508.167	400	463.9	28	11	11	44		1.8	6.6	21.1		80.0	1.45	1.97	2.48			20 6.0	5.2	4.3	39	34	130.7	1.083	9.0
C2	430883.885	5523440.255	361	415.0	74	114	21	23	8.65	10.5	30.5	33.8	163.5	132.8	1.14	1.23	1.66			20 5.9	6.7	7.2	31	17	113.1	1.074	8.5
D2	430883.145	5523372.328	364	393.0	81	51	9	6		2.4	3.0	31.6		229.4	1.75	1.88	1.99			21 7.1	7.9	8.1	57	42	137.0	1.079	9.3
E2	430882.246	5523304.386	373	407.9	130	150	10	10		1.1	3.0	32.7		195.4	1.30	1.50	1.65			18 7.6		7.5	47	39	206.0	1.077	9.0
F2	430881.387	5523236.416	360	418.0	95	168	10	9	6.95	2.7	4.2	13.3	87.0	178.6	1.07	1.67	1.25			19 6.6	5.0	6.1	31	26	171.1	1.076	9.5
G2	430880.517	5523168.414	356	402.0	71	115	9	9		2.2	5.6	26.4		184.0	1.28	1.67	1.65	0.19 (0.11 0	19 8.0	5.2	7.2	52	50	198.5	1.080	7.8
H2	430879.658	5523100.519	528	533.6	74	114	9	8		1.0	1.5	23.7		101.2	1.16	1.69	0.92	0.24 (0.17 0	19 6.9	6.0	7.4	40	34	156.4	1.074	9.0
I2	430878.826	5523032.568	402	417.8	80	217	10	9		0.8	1.1	20.4		154.4	1.02	1.58	1.70	0.22 (0.15 0	20 6.8	4.8	6.7	41	32	130.3	1.070	8.8
J2	430877.991	5522964.592	373	391.8	92	135	11	10	0.40	0.8	0.8	32.1	119.0	166.6	1.16	1.47	1.39	0.36 (0.17 0	19 7.0	5.8	6.0	58	43	163.3	1.077	7.8
K2	430877.172	5522896.629	388	462.7	37	108	14	16		2.6	4.4	46.2		167.6	1.27	1.79	1.75	0.45 (21 7.4	6.4	6.4	45	31	142.0	1.079	9.7
L2	430876.273	5522828.614	313	351.0	87	109	14	20		2.9	3.9	39.1		148.8	2.51	2.15	2.01	0.46 (22 7.2	5.3	6.7	44	34	131.8	1.074	9.0
A3	430958.199	5523541.139	314	313.9	65	128	13	13		1.0	3.2	27.9		174.6	0.88	1.07	1.30			08 7.3	5.3	4.1	32	16	77.1	1.061	9.0
B3	430957.419	5523473.105	370	351.4	60	100	8	8		0.6	1.4	20.3		102.0	0.66	0.84	0.99			09 8.5	6.1	5.0	46	26	92.9	1.074	8.0
C3	430956.612	5523405.18	380	360.2	132	177	17	31	0.55	0.7	0.6	43.1	286.0	310.0	1.60	1.57	1.50			10 9.0	9.0	9.0	50	41	145.5	1.075	9.3
D3	430955.742	5523337.179	415	405.3	73	117	12	14		0.2	1.4	20.1		138.0	1.26	1.78	1.62			10 7.1	5.0	3.7	40	28	105.1	1.076	8.8
E3	430954.96	5523269.237	408	408.6	91	187	12	15		0.3	0.7	11.8		100.0	1.07	1.68	1.74			10 7.4	4.3	3.9	33	23	106.5	1.075	9.3
F3	430954.204	5523201.266	414	407.6	40	76	9	9		0.0	0.0	11.9		59.6	0.08	0.12	0.12			07 6.6		5.0	29	15	86.6	1.065	7.5
G3	430953.393	5523133.326	398	399.6	72	119	10	15	0.15	0.3	1.7	9.14	01.5	57.8	0.48	0.73	0.81			09 6.7	4.0	3.2	41	31	116.5	1.076	7.8
H3	430952.655	5523065.387	488	462.0	139	137	15	13	8.15	8.1	13.2	16.3	91.5	109.0	1.44	1.36	0.89			09 7.7	5.6	5.4	31	22	127.4	1.070	8.5
I3 J3	430951.737 430951.063	5522997.333 5522929.518	456 408	442.1 417.2	108 74	108 99	11 14	15 12		2.8 1.5	8.1 4.4	21.0 21.8		122.6 92.2	0.91 1.71	0.97 1.67	0.97 1.38			10 8.1 12 7.5	6.0	3.8 6.5	39 30	29 22	116.7 137.7	1.069 1.075	8.3 8.5
K3	430950.116	5522861.567	408 320	340.8	46	137	14	36		5.8	23.9	42.4		92.2 257.4	2.03	2.17	1.58			12 7.5 11 8.5	5.0 7.2	7.5	42	36	157.7	1.073	8.5 8.5
B4	431030.577	5523506.315	285	324.8	51	91	10	10	0.25	1.1	1.3	24.6	84.0	168.6	0.91	1.36	1.48			11 5.0	5.2	3.9	36	29	111.4	1.070	8.5 8.5
C4	431029.8	5523438.124	285 391	455.2	101	151	23	31	0.25	1.1	2.6	34.7	04.0	583.2	1.64	1.30	1.46			11 5.0 12 6.4	6.2	5.5	52	31	128.5	1.070	8.3 8.3
D4	431029.115	5523370.278	395	442.3	79	109	19	24		0.9	1.1	24.7		212.2	1.04	1.30	1.40			12 0.4	0.2	5.8	45	28	133.5	1.003	9.5
E4	431028.422	5523302.245	418	435.5	102	120	16	30		1.2	2.0	29.3		143.8	1.01	1.35	1.48			14 6.4	5.3	4.8	45	35	141.2	1.075	9.8
F4	431027.637	5523234.197	427	451.9	45	114	16	35	1.10	1.0	1.6	15.8	65.0	73.0	1.04	1.24	1.42			11 5.8		3.6	44	35	117.8	1.076	7.5
G4	431027.011	5523166.323	418	443.4	107	198	9	9		0.8	1.7	23.9		451.8	0.80	0.95	1.18			12 5.9	5.3	4.4	47	29	109.4	1.074	8.8
H4	431026.258	5523098.333	422	422.3	103	181	10	14		0.8	0.8	27.5		180.4	0.46	0.25	0.42		0.14 0		7.5	6.5	42	25	85.3	1.066	9.0
I4	431025.488	5523030.342	398	390.9	63	79	9	10		1.0	1.0	38.6		117.6	1.08	1.53	1.36			12 6.1	6.8	5.7	42	34	119.0	1.076	8.2
J4	431024.776	5522962.35	433	429.6	63	98	17	14		1.2	2.9	12.0		260.0	0.82	1.29	1.17			13 5.4	4.9	4.0	33	25	107.0	1.070	8.5
K4	431023.95	5522894.345	316	347.2	-2	9	13	14	0.45	1.0	1.4	35.6	196.5	429.2	1.35	1.56	1.01			14 6.7	6.5	6.6	53	36	117.1	1.074	9.0
B5	431100.839	5523472.144	319	348.5	21	9	9	7		1.8	2.9	30.6		94.8	1.07	1.88	1.49	0.48 (0.21 0	15 5.8	5.7	3.8	49	32	80.9	1.080	8.5
C5	431100.222	5523403.549	320	349.0	35	18	10	10		1.0	1.2	40.8		128.8	0.96	1.25	1.53	0.27 (0.14 0	11 6.0	5.3	2.6	45	27	92.6	1.080	8.5
D5	431099.213	5523334.033	400	424.6	122	144	21	25	6.15	2.3	9.6	25.5	134.0	240.8	1.41	1.23				16 6.6		6.4	45	37	191.5	1.083	8.5
E5	431098.364	5523267.723	396	425.4	108	165	16	31		1.9	6.9	31.1		213.8	1.22		1.20			17 6.9		6.6	65	54	123.4	1.085	9.5
F5	431097.599	5523200.61	413	416.1	101	181	9	25		2.6	2.5	31.5		145.6	0.78		0.89			15 6.6		4.8	53	42	109.7	1.083	8.5
G5	431096.721	5523133.014	426	432.1	68	134	9	9	0.00	1.5	3.1	39.2	43.5	156.2	0.33	1.73	1.44			24 6.9		5.7	76	52	118.6	1.084	8.7
H5	431095.435	5523062.111	399	427.5	36	68	9	9		1.0	2.7	38.3		201.8	0.15		0.40			09 7.1		7.0	50	38	124.7	1.076	8.6
15 15	431093.623	5522995.354	449	496.2	104	135	11	28		1.3	2.1	31.2		283.6	1.26					23 6.9		7.8	69 67	59	167.8	1.084	8.5
J5	431092.706	5522928.4	324	357.5	52	113	20	28		0.5	1.3	32.7	101	222.4	2.27	1.93	1.64			17 6.8	7.4	7.4	67	55	147.2	1.082	9.8
Means Additional In			393	408.9	76	116	12	16	2.98	1.9	3.9	29.9	124	174.8	1.09	1.39	1.28	0.28	0.17 0.	14 6.7	6.0	5.7	44	33	130.2	1.075	8.7

Means Additional Information, as follows. DR – June 19 – September 16, 1998 Kel – Kelowna method AA – Ammonium Acetate method DT¹ – July 7, 1998 DT² – July 23, 1998 DT³ – August 11, 1998

VI. 1998 Hays Grid Sample Data

1998 Hays Si	te (Snowden)																												
_	Position Data		Moisture				Soil Ch	aracteristi							Petiole		nt Conter	nts						Hand	Sampled Tu	ber Data			
Site	Easting	Northing	Irrigation +	Consumpti	Availab	le Water	C	lay	CaCO ₃	N	D3-N	PO ₄ -P		K		NO ₃ -N			Р			K		Total	Medium	Mean	Specific	French	Chipping
	(m)	(m)	Precipitation	ve Use	(%)	(%)	(%)	(p	pm)	(ppm)	(pj	om)		(%)			(%)			(%)		Yield	Tuber	Tuber	Gravity	Fry	Score
			(mm)	(mm)																				(t/ha)	Yield	Weight		Score	
								•			•														(t/ha)	(g)			
Info🗳			DR									Kel	AA	Kel	DT ¹	DT^2	DT^{3}	DT ¹	DT^2	DT '	DT ¹	DT^2	DT ³						
Depth (cm)				(0-100)	(0-60)	(60-100)	(0-60)	(60-90)	(0-30)	(0-60)	(60-90)	(0-15)	(0-30)	(0-30)															
D1	438531.588	5536799.196	421	475	76	100	26	29		5.7	2.7	21		135	1.42	0.46	1.05	0.26	0.11	0.11	6.6	6.0		50	43	84	1.086		56.5
E1	438530.645	5536731.164	475	520	109	125	24	28		2.5	0.6	5	1.50	165	1.17	0.30	1.07	0.16	0.09	0.11	7.2	6.9	5.9	56	45	87	1.086		59.8
F1	438529.643	5536663.144	396	442	79	122	19	16	5.15	0.6	0.0	2	159	174	1.40	0.99	1.36	0.20	0.11	0.15	7.5	6.8	6.8	43	36	82	1.087		60.3
Gl	438528.756	5536595.036	414	442	89	182	8	16		0.7	5.7	21		103	0.65	0.32	1.26	0.26	0.15	0.36	6.7	6.8	6.9	45	39	89	1.082		59.0
H1	438527.841	5536527.115	465	502 452	187	255	9	12	0	3.4	2.0	22	224	157	0.82	0.55	1.28	0.23	0.09	0.18	8.0	9.0	8.4	45	37	83	1.080		59.0
I1 D2	438526.875	5536459.222	423	453	95	145	10	10	0	3.7	3.0	26	224	249	0.94	0.53	1.70	0.39	0.15	0.33	8.2	8.6	9.4	54	47	92	1.079		61.0
B2	438606.003	5536900.103	430	493	80 86	97 154	12	10		3.2	0.6	31		255	1.84	1.44	1.60	0.71	0.33	0.34	8.4	8.6	8.2	66	60	96 107	1.078		62.0
C2 D2	438605.04 438604.228	5536832.07 5536764.072	385 455	428 491	86	154 174	11 14	25 31	0	7.7 5.8	2.7 1.9	32	193	211 230	0.71 0.93	0.65 0.78	0.93 1.25	0.36 0.38	0.13 0.15	0.17 0.21	7.9 7.8	8.0 7.4	6.8 7.6	62 70	58 63	107 113	1.081 1.072		59.0 58.8
E2	438603.286	5536696.175	388	491	115 99	174	14	13	0	5.8 6.4	1.9	29 34	195	181	0.93	0.78	0.53	0.38	0.15	0.21	7.8	7.4	6.7	52	46	101	1.072		53.8
F2	438602.362	5536628.131	402	412 458	104	191	6	13		1.6	1.0	22		109	0.30	0.10	1.18	0.30	0.13	0.13	6.9	6.8	6.8	52	40 50	101	1.080		56.0
G2	438601.431	5536560.217	386	407	1104	191	7	27		1.0	8.0	20		84	0.18	0.30	0.61	0.30	0.23	0.33	6.8	7.1	5.7	55	46	81	1.079		60.3
H2	438600.605	5536492.16	420	467	110	189	10	33		5.0	2.8	20 28		164	0.41	0.58	1.04	0.42	0.24	0.21	0.8 7.5	6.9	6.1	63	40 56	88	1.081		63.8
I2 I2	438599.74	5536424.228	408	423	113	205	7	11	0	2.3	3.4	26	158	136	0.40	0.37	1.04	0.37	0.19	0.22	7.7	7.1	7.3	49	44	107	1.077		57.3
J2	438598.797	5536356.45	425	493	72	101	7	17	Ű	0.7	1.7	19	100	160	0.44	0.50	0.75	0.31	0.18	0.15	7.7	7.2	6.6	46	40	112	1.083		61.8
B3	438679.351	5536933.121	466	498	86	144	13	34		4.1	1.0	24		190	0.90	0.77	0.93	0.22	0.09	0.12	7.6	7.9	6.2	68	61	97	1.086		62.0
C3	438678.595	5536865.14	416	443	97	183	11	28		3.7	1.8	21		177	0.43	0.50	1.06	0.32	0.10	0.12	7.7	7.8	7.2	63	60	109	1.082		55.0
D3	438677.665	5536797.213	412	399	100	184	7	9		1.8	2.3	23		124	0.29	0.23	0.70	0.41	0.10	0.17	7.3	6.9	6.6	46	42	98	1.085		60.0
E3	438676.925	5536729.388	386	395	129	180	10	29		6.9	10.7	27		154	0.68	0.49	0.86	0.38	0.10	0.16	7.4	6.9	6.6	52	44	99	1.078		61.5
F3	438676.024	5536661.359	388	428	154	205	8	33	0	1.6	2.8	24	96	92	0.35	0.48	0.37	0.38	0.14	0.14	7.0	5.9	6.0	41	32	67	1.077		61.3
G3	438675.042	5536593.392	377	387	257	284	7	6		1.6	2.0	25		158	0.01	0.11	0.42	0.17	0.08	0.12	5.8	7.2	7.4	30	19	48	1.061		64.8
H3	438674.216	5536525.461	408	426	244	273	7	7		4.5	2.4	37		131	0.04	0.06	0.18	0.25	0.09	0.15	4.9	7.1	7.2	40	27	56	1.072		61.8
I3	438673.328	5536457.421	411	399	202	242	7	13		2.4	1.8	2		128	0.59	0.31	0.62	0.51	0.14	0.14	7.1	7.8	7.3	45	38	74	1.079		62.3
J3	438672.503	5536389.524	419	422	94	118	10	15	0	1.8	2.4	24	161	146	1.03	0.66	0.70	0.31	0.10	0.13	7.3	7.4	7.6	39	34	88	1.078		55.3
K3	438671.534	5536321.514	417	413	93	112	10	10		6.9	2.9	28		172	0.63	0.41	1.05	0.27	0.09	0.14	7.4	8.0	6.9	42	36	82	1.075		61.8
A4	438752.834	5536966.219	442	495	76	81	9	8		3.8	2.3	26		166	0.85	0.92	1.10	0.50	0.19	0.17	7.1	7.4	5.4	58	53	96	1.078		61.3
B4	438752.263	5536898.3	436	497	82	136	14	40		2.4	0.7	18		213	1.39	1.21	1.32	0.37	0.15	0.21	7.4	7.4	7.3	50	44	100	1.080		59.3
C4	438751.451	5536830.325	470	518	115	181	16	38	0	2.5	0.7	16	190	205	1.40	1.48	1.57	0.38	0.19	0.25	7.5	7.1	7.2	69	62	92	1.082		62.5
D4	438750.56	5536762.421	441	479	137	201	8	17		1.8	4.6	16		97	0.61	0.67	1.08	0.41	0.24	0.22	6.9	6.9	5.4	61	56	98	1.081		55.5
E4	438749.75	5536694.55	430	487	144	202	9	15		2.2	1.7	22		176	1.14	1.36	1.25	0.50	0.20	0.28	7.5	7.4	7.5	75	68	106	1.078		63.0
F4	438748.917	5536626.513	422	495	233	218	10	31		2.6	5.9	18		144	0.13	0.27	0.47	0.29	0.14	0.20	5.7	6.8	6.3	41	24	57	1.082		64.0
G4	438748.016	5536558.501	418	468	232	288	8	8		4.1	1.9	24		308	0.28	0.56	0.93	0.32	0.17	0.23	6.6	7.9	6.9	48	36	63	1.073		58.5
H4	438747.285	5536490.606	412	490 507	167 94	220	15	30	0	3.5	3.5	23	107	184	0.57	0.05	0.72	0.29	0.18	0.22	6.3	7.4	7.8	54	42	69 105	1.076		53.3
I4 J4	438746.373 438745.465	5536422.601 5536354.681	439 428	507 493	94 110	144 168	27 29	32 38	0	1.1 4.0	0.7 0.0	20 12	187	178 247	1.48 2.13	1.13 1.42	1.38 1.03	0.37 0.30	0.19 0.17	0.24 0.18	7.4 7.7	6.7 7.1	7.5 7.5	64 60	60 55	105 102	1.080 1.084		61.0 57.5
J4 K4	438744.374	5536286.5	428 416	493 506	72	108	29 8	38 30		4.0	1.5	12		90	0.80	0.35	0.96	0.30	0.17	0.18	7.0	6.7	6.1	38	30	75	1.084		57.5 59.5
A5	438826.358	5536999.112	512	554	61	80	25	45		5.6	1.5	14		176	1.40	1.70	1.55	0.42	0.10	0.52	7.5	7.2	7.9	58 68	54	127	1.079	9.0	59.5
B5	438825.46	5536931.216	481	514	48	80	23	29	0	1.3	0.0	13	190	185	0.59	0.88	0.97	0.75	0.29	0.19	7.8	7.1	7.9	71	59	127	1.077	8.3	
C5	438824.708	5536863.288	481	504	70	95	16	37	0	2.6	1.5	16	190	160	0.39	0.80	1.56	0.59	0.17	0.13	7.8	7.0	7.9	69	46	100	1.070	8.3 8.8	
D5	438823.788	5536795.26	466	486	92	108	16	37		1.9	1.3	10		113	0.38	0.65	1.34	0.60	0.16	0.12	7.8	6.7	6.6	80	62	119	1.077	7.5	
E5	438822.922	5536727.377	447	451	191	213	8	10	0	3.1	3.1	19	166	181	0.08		0.86			0.13	7.7	7.5	6.9	55	28	74	1.067	8.3	
F5	438822.052	5536659.395	427	443	173	213	7	11	Ŭ	3.4	1.4	26	100	215	0.11	0.05	0.70		0.21		7.6	7.3	7.3	62	30	65	1.068	9.0	
G5	438821.264	5536591.318	406	429	197	217	7	17		6.8	7.3	26		112	0.03	0.05	0.33		0.23		7.2	6.4	6.4	52	28	70	1.072	8.0	
H5	438820.662	5536523.294	423	475	160	148	10	31	0	2.2	1.3	24	147	139	0.02	0.13	0.12		0.17		6.5	7.7	7.4	0					
15	438819.477	5536455.622	450	469	147	121	20	35		1.7	1.7	13		278	0.10	0.02	0.15		0.09	0.08	6.3	7.4	8.0	0					
J5	438818.753	5536387.448	444	410	129	246	7	8		1.8	1.0	22		156	0.15	0.54	1.16		0.21		7.6	7.0	7.6	60	41	92	1.074	7.8	
K5	438817.96	5536319.488	424	449	75	129	7	11	0.05	0.7	1.8	15	109	91	0.23	0.39	1.00				7.4	7.1	6.6	46	27	79	1.068	8.3	
L5	438817.128	5536251.791	455	489	83	138	10	25		2.4	1.8	27		128	0.58	0.30	1.49		0.16		7.3	7.7	6.5	71	47	100	1.075	8.0	
Means			428	463	122	168	12	22	0.43	3.1	2.4	21	165	165	0.67	0.57	0.97	0.42	0.16	0.19	7.2	7.3	7.0	53	45	90	1.078	8.3	59.7

Additional Information, as follows.

 $\label{eq:DR-June 19-September 9, 1998} \\ Kel - Kelowna method \\ AA - Ammonium Acetate method \\ DT^1 - July 6, 1998 \\ DT^2 - July 22, 1998 \\ DT^3 - August 10, 1998 \\ \end{array}$

VII. 1999 Fincastle Grid Sample Data

1999 Fincasti	e Site (FL1625)																										
	Position Data		Moisture				Soil Ch	aracteristi	cs						Petiole	Nutrier	nt Conter	nts						Hand-Sa	mpled Tube	er Data	
Site	Easting	Northing	Irrigation +	Consumpti		ole Water		lay	CaCO ₃		O ₃ -N	PO ₄ -P		Κ		NO ₃ -N			Р			Κ		Total	Medium	Mean	Specific
	(m)	(m)	Precipitation	ve Use	0	%	(%)	(%)	(p	pm)	(ppm)	(pp	m)		(%)			(%)			(%)		Yield	Tuber	Tuber	Gravity
			(mm)	(mm)																				(t/ha)	Yield	Weight	
L.C.A								r			1	¥7 1		¥7 1	DT	DT ²	DOD 3	DT	DT ²	DT 3	DT	D7	DTT 3		(t/ha)	(g)	
Info			DR	(0.100)	(0, (0))	(60, 100)	(0, (0))	((0,00))	(0.20)	(0, (0))	((0,00))	Kel	AA (0,20)	Kel	DT ¹	DT^2	DT '	DT ¹	DT^2	DT '	DT	DT^2	DT ³		-		
Depth (cm)	434730.679	5529125.047	334	(0-100)	(0-60)	(60-100) 89	(0-60)	(60-90)	(0-30)	(0-60)	(60-90)	(0-15)	(0-30)	(0-30)	0.22	0.29	0.24	0.50	0.17	0.16	0.6	8.0	5.4	32	29	117.8	1.107
A1 B1	434729.205	5528125.947 5528082.462	317	341 321	105 81	89 76	20 22	21 22	3.6 3.4	1.7 0.6	2.3 0.0	16 12	231 180	143 110	0.33 0.42	0.38 0.79	0.34 1.16	0.50 0.14	0.17 0.14	0.16 0.14	9.6 9.0	8.0 7.3	5.4 5.3	32	28 32	117.8	1.107
C1	434727.815	5528002.959	342	347	68	19	17	22	1.1	0.0	0.0	12	165	90	1.22	1.09	0.62	0.33	0.14	0.14	9.0 8.6	8.2	5.3	28	23	129.4	1.104
D1	434727.121	5527924.325	313	323	76	42	24	36	2.0	0.0	0.0	27	140	80	1.12	0.85	0.61	0.41	0.31	0.22	8.8	7.8	5.3	37	32	137.6	1.104
E1	434726.007	5527843.383	310	020	70	56	15	19	1.0	0.5	0.0	63	164	95	1.35	1.45	1.19	0.63	0.52	0.42	9.4	8.7	5.3	35	31	145.5	1.097
F1	434724.132	5527763.290	348	335	108	102	12	20	0.6	0.4	0.0	54	136	83	0.43	1.49	1.71	0.72	0.47	0.41	9.3	7.8	5.4	27	26	131.6	1.098
G1	434723.837	5527683.163	349	329	109	152	15	33	0.4	0.5	0.5	54	168	108	0.85	1.16	1.77	0.67	0.51	0.39	9.5	8.7	5.3	31	29	148.0	1.097
H1	434722.733	5527603.904	346	295	58	19	11	12	0.7	0.2	0.5	43	161	105	0.51	0.38	0.72	0.55	0.43	0.34	9.7	8.4	5.3	33	28	177.2	1.100
I1	434721.204	5527523.984	329	341	40	13	17	31	0.6	0.6	0.0	48	145	92	2.06	1.46	1.10	0.65	0.59	0.47	10.4	9.3	5.2	34	31	132.4	1.099
J1	434720.141	5527442.917	344	343	67	63	12	22	0.4	0.2	0.0	35	106	67	0.72	1.07	1.27	0.62	0.48	0.43	9.6	8.2	5.3	42	31	167.6	1.097
K1	434720.093	5527389.989	301	391	41	55	12	18	0.6	1.7	3.9	46	203	133	0.20	0.12	0.95	0.63	0.42	0.27	10.1	9.2	5.3	34	31	117.7	1.103
A2	434821.375	5528111.025	356	352	159	147	26	28	4.6	1.4	0.7	12	196	118	0.93	0.48	0.66	0.29	0.17	0.16	9.8	8.1	5.3	31	28	121.5	1.105
B2	434819.845	5528041.725	327	350	98	35	23	20	6.3	0.4	0.0	19	138	78	1.22	0.74	0.52	0.29	0.21	0.23	8.2	7.4	5.7	36	26	145.6	1.111
C2	434818.367	5527960.253	330	342	28	19	24	22	9.8	0.2	0.0	14	118	64	1.16	0.91	0.80	0.15	0.16	0.17	8.0	6.7	4.9	33	28	132.1	1.110
D2	434817.490	5527881.581	312	336	40	10	24	26	6.4	1.1	0.8	48	129	71	1.08	1.04	0.78	0.47	0.24	0.21	9.2	8.0	5.0	39	29	188.4	1.100
E2	434816.193	5527802.046	362	343	52	32	19	22	2.7	1.1	0.6	48	122	67	1.53	1.54	1.30	0.59	0.56	0.54	8.8	7.8	5.3	33	28	144.8	1.097
F2	434815.005	5527721.508	277	293	51	46	13	19	0.8	0.8	4.7	56	152	87	0.56	0.94	0.80	0.64	0.50	0.39	9.9	8.4	5.0	47	33	179.0	1.097
G2	434813.753	5527640.814	301	298 207	56	55	13	20	1.5	0.6	13.4	54	169	100	0.57	1.24	1.33	0.68	0.53	0.43	10.0	8.9	5.3	47	34	185.5	1.099
H2	434812.930	5527561.976	287	307	39	48	11	16	1.0	0.8	7.1	46	131	80	0.37	0.41	0.99	0.62	0.48	0.28	9.8	8.6	5.0	39	34	148.9	1.102
I2 J2	434811.710 434810.697	5527482.351 5527412.397	326 341	332 368	47 14	30 -15	11 12	14 12	1.3 1.0	0.2 0.2	0.0 0.7	35 44	103 121	55 70	0.31 0.76	0.25 0.49	0.40 0.78	0.62 0.68	0.42 0.49	0.23 0.33	9.6 10.1	8.1 8.5	5.3 5.3	37 39	31 33	156.8 140.0	1.113 1.104
A3	434892.218	5528136.163	224	209	112	100	22	26	4.2	10.7	1.7	50	247	157	0.70	0.49	1.01	0.08	0.49	0.33	9.6	8.2	5.3 5.4	39	27	98.3	1.104
B3	434891.082	5528081.190	424	400	143	209	28	36	2.7	0.4	0.0	20	178	95	1.57	0.02	0.53	0.29	0.19	0.10	8.9	7.9	4.0	45	35	143.5	1.101
C3	434890.411	5528001.030	346	352	78	31	28	22	3.1	0.4	0.0	18	125	73	0.72	0.66	0.33	0.29	0.19	0.20	8.5	7.4	4.0	37	33	143.5	1.105
D3	434888.758	5527920.383	278	268	58	19	16	19	1.2	0.2	0.0	26	155	85	0.97	0.89	0.95	0.45	0.28	0.29	9.1	8.2	3.9	35	30	122.3	1.100
E3	434887.428	5527842.011	329	343	68	133	19	28	1.9	3.0	1.8	56	143	76	2.00	1.57	1.47	0.51	0.44	0.41	9.6	7.8	4.0	42	36	147.6	1.090
F3	434886.304	5527761.250	291		34	2	11	23	0.6	1.0	14.3	53	120	70	0.20	0.85	0.98	0.56	0.49	0.45	9.1	7.8	4.0	45	32	150.4	1.095
G3	434885.096	5527681.959	276	253	63	14	12	20	0.8	1.3	11.7	59	153	92	0.52	0.77	0.93	0.60	0.44	0.44	9.7	8.2	3.9	47	38	159.6	1.098
H3	434884.016	5527601.598	352	333	63	121	10	12	0.6	0.8	4.9	52	138	88	0.44	0.28	0.43	0.68	0.46	0.38	9.6	8.0	4.0	44	37	135.8	1.100
I3	434882.794	5527522.059	289	282	57	99	10	10	0.6	0.8	2.8	65	137	92	0.64	0.42	0.68	0.69	0.43	0.37	9.9	8.5	4.0	36	32	169.1	1.100
J3	434881.429	5527441.844	324	307	82	90	11	15	0.5	1.7	13.0	63	159	108	1.23	0.71	1.15	0.66	0.42	0.44	10.0	8.7	3.7	20	17	149.8	1.090
K3	434880.339	5527386.710	418		61	115	10	19	0.5	1.4	7.0	67	199	141	0.18	0.46	0.64	0.80	0.45	0.40	10.3	8.9	3.6	39	34	136.4	1.102
A4	434975.144	5528110.152	235	208	57	92	19	23	0.8	0.7	0.0	39	233	129	1.86	1.14	1.16	0.37	0.22	0.16	9.1	8.4	3.9	34	27	117.1	1.096
B4	434974.128	5528040.093	263	289	131	110	35	29	4.2	0.9	0.6	16	139	75	1.74	1.09	0.45	0.29	0.22	0.16	8.5	7.8	3.9	38	29	126.8	1.106
C4	434972.866	5527960.541	287	302	63	61	15	22	0.7	1.9	2.8	24	174	102	1.14	1.14	0.86	0.58	0.33	0.29	9.6	8.5	4.3	37	32	132.3	1.102
D4	434971.754	5527880.276	299 250	321	50	31	18	21	1.0	1.1	0.8	39	146	85	1.77	1.83	1.58	0.50	0.50	0.50	8.8	8.2	3.7	37	32	131.6	1.090
E4 F4	434970.519 434969.323	5527800.434 5527720.352	250 270	282 283	33 24	6 38	10	10 16	0.5	1.9	14.3	63 56	137 157	86 98	1.12 0.95	0.44 0.72	$0.80 \\ 0.97$	0.63 0.55	0.51 0.48	0.35 0.35	10.3 9.8	9.3 8.7	3.8	42 43	39 26	128.4 177.5	1.106 1.094
F4 G4	434969.323 434967.996	5527640.531	270 275	283 258	24 31	38 58	12	22	0.6 0.7	3.0	10.4 20.7	56 52	157		0.95	0.72			0.48	0.35			3.6 3.6	43 44	26 30	177.5	1.094
H4	434967.996	5527560.295	275 387	258 353	51 52	58 62	13 11	16	0.7	1.3 0.9	20.7 4.6	52 42	144	85 87	0.85	0.99	0.82 0.40	0.66 0.74	0.53	0.48 0.42	10.2 10.2	8.7 8.5	3.6 3.8	44 46	30 43	123.2	1.097
I4 I4	434965.319	5527480.535	261	253	32	46	10	12	0.8	4.7	12.4	53	169	113	0.55	0.33	0.40	0.74	0.49	0.42	10.2 10.4	8.5	3.8 3.7	40	43 37	115.5	1.099
J4	434963.881	5527410.613	283	253	32	40 93	10	21	1.0	8.0	29.8	46	169	106	1.45	1.50	1.51	0.67	0.40	0.30	10.4	8.8	3.9	45	41	149.0	1.099
B5	435050.858	5528079.374	158	166	66	102	31	30	4.3	23.6	8.3	23	188	111	1.45	1.72	1.68	0.25	0.49	0.44	8.6	8.1	4.0	36	32	127.4	1.103
C5	435050.299	5527999.572	281	316	47	102	22	22	13.2	1.4	1.3	20	146	93	1.49	1.22	1.00	0.25	0.24	0.22	8.8	8.3	3.7	27	26	126.4	1.105
D5	435049.829	5527919.449	257	248	67	67	31	37	1.1	1.9	1.2	22	205	119	1.92	1.57	1.48	0.35	0.28	0.35	9.1	8.6	3.5	38	29	139.0	1.093
E5	435048.239	5527839.823	329	329	-10	41	13	24	0.8	4.5	18.4	72	150	92	0.50	0.92	1.17	0.64	0.51	0.49	10.4	8.5	3.7	40	31	173.4	1.099
F5	435046.776	5527759.335	301	308	30	39	10	17	1.0	2.0	4.6	70	193	120	1.01	0.42	0.53	0.64	0.49	0.46	10.8	9.8	3.6	43	36	153.2	1.098
G5	435045.437	5527678.991	314	306	57	81	13	25	0.8	2.1	12.1	78	256	168	0.96	0.87	1.02	0.70	0.58	0.47	10.7	9.8	3.4	31	28	110.9	1.098
H5	435044.123	5527599.538	360	380	28	31	10	11	1.1	2.1	13.5	40	214	146	0.54	0.03	0.03	0.81	0.53	0.51	10.1	8.9	3.8	44	36	148.0	1.106
15	435042.906	5527519.281	279	317	9	9	10	11	0.9	6.4	22.0	43	384	278	0.46	0.12	0.07	0.69	0.50	0.38	10.1	9.5	3.5	38	34	112.0	1.101
J5	435041.392	5527458.930	219	204	28	35	11	25	1.0	23.9	52.1	59	293	201	1.45	0.86	1.03	0.73	0.56	0.60	10.7	9.8	3.1	40	39	142.6	1.099
Means			308	309	60	59	16	21	2.0	2.5	6.3	43	168	103	0.96	0.86	0.91	0.54	0.39	0.34	9.6	8.4	4.4	38	31	141.1	1.100

Additional Information, as follows. DR – July 2 – September 3, 1999 Kel – Kelowna method

AA – Ammonium Acetate method DT^1 – July 9, 1999 DT^2 – July 28, 1999 DT^3 – August 13, 1999

VIII. 1999 Hays Grid Sample Data

1999 Hays Sit	ays Site (Snowden)																											
	Position Data		Moisture				Soil Ch	aracteristi	es						Petiol	e Nutrier	nt Conter	nts						Hand-Sar	npled Tube	er Data		
Site	Easting	Northing	Irrigation +	Consumpti	Avaliat	ble Water	C	lay	CaCO ₃	NO	D3-N	PO ₄ -P]	K		NO ₃ -N			Р			K		Total	Medium	Mean	Opacity	Specific
	(m)	(m)	Precipitation	ve Use		%	(%)	(%)	(p	pm)	(ppm)	(pp	m)		(%)			(%)			(%)		Yield	Tuber	Tuber		Gravity
			(mm)	(mm)																				(t/ha)	Yield	Weight		
																									(t/ha)	(g)		
Info🗳			DR									Kel	AA	Kel	DT^{1}	DT^2	DT^{3}	DT^{1}	DT^2	DT^3	DT^{1}	DT^2	DT^{3}					
Depth (cm)				(0-100)	(0-60)	(60-100)	(0-60)	(60-90)	(0-30)	(0-60)	(60-90)	(0-15)	(0-30)	(0-30)														
A1	438901.353	5537802.739	202	287	94	75	36	42	1.6	0.39	0.00	24	485	282	1.59	1.15	0.27	0.23	0.14	0.09	9.6	5.4	4.8	30	26	114.5	59.70	1.097
B1	438900.519	5537742.303	198	319	49	76	31	32	1.4	0.88	0.00	19	237	168	1.22	0.64	0.71	0.20	0.12	0.10	9.0	5.3	4.6	28	26	93.9	60.50	1.098
C1	438899.251	5537654.886	202	302	12	19	6	5	2.1	0.00	0.00	22	157	196	0.27	0.85	0.04	0.22	0.14	0.12	9.4	5.4	4.7	31	30	105.0	61.48	1.100
D1	438898.355	5537577.275	202	286	139	94	8	18	2.8	1.34	2.98	25	258	204	1.98	1.32	1.09	0.30	0.22	0.19	10.8	5.1	4.6	30	25	91.8	59.96	1.099
E1	438897.233	5537499.906	207	294	162	198	7	14	1.3	0.72	7.06	18	185	118	0.66	0.19	0.18	0.30	0.12	0.12	10.1	5.3	4.4	41	35	116.3	59.96	1.102
F1	438896.412	5537422.836	190	312	145	185	7	10	0.9	0.52	12.70	19	117	91	0.76	0.31	0.01	0.23	0.42	0.24	8.9	5.3	4.6	24	21	84.4	58.99	1.110
G1	438895.245	5537345.214	191	223	198	204	7	12	1.1	0.31	0.51	21	148	95	1.22	0.37	0.38	0.19	0.09	0.14	10.6	5.3	4.7	28	21	62.0	60.56	1.094
H1	438894.223	5537268.288	225	302	115	136	7	14	0.8	0.00	0.00	21	121	151	1.30	1.19	0.90	0.16	0.12	0.10	8.3	5.3	4.6	50	45	100.9	61.78	1.090
I1	438893.407	5537190.871	235	292	140	117	11	31	1.2	3.17	1.25	30	261	160	1.21	0.62	0.06	0.20	0.19	0.09	10.3	5.3	4.7	45	40	91.5	60.52	1.094
J1 V1	438892.435	5537113.489	214	343	131	218	11	28	0.5	0.00	0.67	21	120	122	0.38	1.31	0.00	0.23	0.20	0.10	9.7	5.3	4.7	30	27	97.6	60.16	1.110
K1	438891.946	5537045.230	221	308	98	162	16	19	0.4	0.53	0.00	21	155	187	1.59	1.75	1.39	0.18	0.20	0.13	9.7	5.3	4.8	37	32	107.8	60.69	1.091
C2 D2	438953.123	5537770.223	208 205	266	106	108	28	50 40	0.8	0.95	0.00	25	262	206	1.43	1.37	0.95	0.17	0.13	0.10	8.3	5.3	4.3 4.7	24	35	175.9	61.10	1.101
E2	438952.023 438951.139	5537693.018 5537615.713	205 219	284 315	65 46	91 96	19 20	40 31	1.0 0.7	0.00 0.57	$0.00 \\ 0.79$	23 28	189 211	189 199	0.78 1.48	1.30 0.61	0.65 0.23	0.19 0.24	0.14 0.15	0.10 0.10	9.3 10.4	4.9 5.2	4.7	18 16	17 35	79.0 88.5	60.63 55.57	1.109 1.097
F2	438950.097	5537538.058	219 200	294	40 66	90	20	9	0.7	1.44	0.79 8.44	28 34	207	199	1.48	0.01	0.23	0.24	0.15	0.10	10.4	2.7	4.7	20	33	88.5 111.6	56.35	1.097
G2	438949.070	5537461.360	191	232.5	131	137	11	9	0.0	0.43	0.91	26	128	102	0.99	0.34	0.02	0.26	0.13	0.09	10.6	2.6	4.7	19	33	117.3	59.68	1.101
H2	438947.981	5537383.411	191	232.5	198	234	14	11	0.5	0.43	1.03	20	97	91	1.30	0.21	0.00	0.26	0.12	0.09	10.0	2.5	4.8	22	33	125.9	57.55	1.095
I12 I2	438947.748	5537306.217	183	270.5	127	144	12	25	0.0	0.00	1.08	18	129	91	1.04	0.12	0.00	0.28	0.16	0.10	9.7	2.4	4.7	29	40	152.9	60.06	1.098
J2	438946.142	5537228.829	183	217	178	181	8	9	0.7	0.00	2.02	19	112	106	1.19	0.04	0.00	0.28	0.13	0.10	10.5	2.6	4.8	26	38	92.4	61.43	1.100
K2	438945.078	5537151.613	187	217.5	186	164	18	24	1.1	0.82	0.97	18	149	119	1.53	0.04	0.00	0.42	0.15	0.13	10.4	2.7	5.6	18	12	41.4	57.08	1.108
L2	438944.151	5537074.166	197	283	106	119	19	22	1.9	1.08	1.10	18	136	184	1.58	0.89	0.27	0.21	0.15	0.12	8.4	2.6	4.7	21	36	88.4	58.01	1.092
A3	439028.024	5537801.346	184	214	90	80	27	38	0.4	1.23	0.00	21	302	217	1.79	0.60	1.06	0.27	0.16	0.13	9.5	2.6	4.6	21	36	95.1	61.69	1.093
B3	439026.928	5537730.751	230	288	34	93	11	14	0.8	0.40	0.00	23	222	175	1.34	1.20	0.56	0.36	0.17	0.11	9.4	5.7	4.7	29	32	112.9	59.76	1.101
C3	439025.803	5537651.912	204	280	78	111	39	41	0.8	0.94	0.00	22	220	139	1.83	1.35	1.20	0.24	0.13	0.11	8.8	5.3	4.2	21	30	101.9	57.27	1.093
D3	439024.693	5537576.041	206	290.5	30	112	7	11	0.7	0.00	0.00	20	140	114	1.09	0.28	0.02	0.42	0.22	0.13	9.3	5.8	4.7	20	30	98.9	62.61	1.099
E3	439023.847	5537498.624	224	316.5	107	221	7	17	0.8	0.00	1.21	21	149	189	1.62	0.49	0.04	0.35	0.17	0.13	8.9	5.7	4.7	27	46	116.0	61.21	1.099
F3	439022.916	5537421.286	183	225	213	127	12	21	0.3	1.80	0.98	29	349	183	2.65	1.08	1.14	0.38	0.20	0.28	10.8	5.9	3.6	23	35	82.2	60.96	1.089
G3	439021.796	5537343.987	184	275	134	128	11	19	0.7	1.35	0.94	18	153	95	1.65	0.69	0.19	0.42	0.21	0.15	10.0	5.8	4.7	30	46	135.4	60.49	1.095
H3	439020.753	5537266.777	192	275.5	162	243	15	43	0.4	0.77	0.57	24	129	91	1.99	1.07	0.44	0.31	0.16	0.14	9.7	5.8	4.6	25	43	90.7	57.59	1.095
I3 12	439019.930	5537189.617	197	234.5	186	241	11	20	1.0	3.25	9.33	27	117	114	2.81	0.85	0.41	0.43	0.20	0.17	10.1	5.8	4.7	22	34	142.4	58.22	1.095
J3 K3	439019.162 439018.309	5537111.949 5537046.828	196 136	246.5 220.5	192 135	200 176	11 25	15 36	1.0 0.9	0.55 2.92	2.23 2.42	29 29	146 237	186 178	2.85 2.77	0.38 2.14	0.61 1.51	0.43 0.52	0.16 0.28	0.17 0.20	10.6 11.0	5.8 5.7	4.4 3.9	24 20	39 34	92.3 92.1	61.38 59.26	1.098 1.096
B4	439105.437	5537768.650	254	299.5	101	175	30	46	1.1	1.06	0.00	17	172	118	1.63	1.47	1.06	0.32	0.28	0.20	8.4	5.6	4.4	20	22	110.8	62.16	1.101
C4	439104.332	5537691.258	234	283	101	196	11	32	0.5	1.33	0.86	21	141	88	1.05	1.36	0.73	0.42	0.23	0.14	9.0	5.6	4.7	30	29	103.0	60.76	1.096
D4	439103.144	5537613.871	204	275	49	168	9	25	0.6	0.88	0.66	31	96	75	1.58	1.07	0.19	0.43	0.25	0.15	9.0	5.6	4.5	20	19	93.7	62.31	1.103
E4	439102.189	5537536.393	213	247	148	150	15	23	0.0	4.21	8.48	21	119	83	2.50	0.37	0.05	0.45	0.27	0.10	10.7	5.9	4.4	20	16	63.8	60.59	1.095
F4	439101.235	5537459.127	211	296	94	135	21	37	0.4	0.93	0.00	15	132	73	1.60	1.18	0.66	0.23	0.17	0.12	8.7	5.8	4.6	27	26	111.4	61.43	1.098
G4	439100.034	5537381.661	202	263	23	59	12	32	0.5	1.24	0.53	5	125	60	1.36	1.26	0.80	0.44	0.27	0.18	9.4	5.9	4.4	22	20	137.9	61.49	1.095
H4	439099.090	5537304.598	191	247	30	140	17	39	0.6	0.43	0.00	12	90	85	1.02	1.04	0.60	0.27	0.15	0.12	8.2	5.4	3.6	16	14	78.4	60.83	1.106
I4	439098.094	5537227.026	193	279	35	88	12	32	0.4	1.58	1.54	25	170	138	1.91	1.17	0.69	0.29	0.20	0.15	8.9	5.8	4.4	35	29	154.8	59.53	1.093
J4	439097.389	5537149.713	198	276	73	125	11	28	0.5	0.73	0.75	16	225	153	1.49	1.16	0.61	0.25		0.12		5.9	4.4	23	23	135.0	59.85	1.094
K4	439092.546	5537072.361	181	242	60	162	17	39	0.6	0.87	0.53	21	191	108	1.92	1.42	0.84	0.37	0.18	0.15	9.8	5.9	4.4	30	29	124.5	61.55	1.100
C5	439181.201	5537649.607	207	302.5	-13	50	8	30	0.3	1.15	0.00	14	104	82	1.65	0.79	0.43	0.48	0.17	0.16	9.4	5.8	4.1	19	19	104.7	63.54	1.106
D5	439179.149	5537574.110	213	267	17	76	7	8	0.8	0.52	0.00	20	140	83	1.61	0.71	0.17	0.55	0.18	0.14	9.9	5.9	4.4	12	11	109.6	58.89	1.108
E5	439178.921	5537496.708	203	204	18	77	24	47	0.4	0.91	0.54	15	112	98	1.72	1.32	0.93	0.34	0.16	0.14	8.5	5.4	3.6	24	16	127.0	60.26	1.097
F5	439178.087	5537419.385	189	181	56	132	25	44	0.7	1.50	0.61	19	159	108	1.69	1.52	1.04	0.32	0.16	0.13	8.8	5.5	3.8	25	24	127.1	58.50	1.097
G5	439177.265	5537342.207	202	241	59	136	13	36	0.0	0.80	0.60	13	150	93 87	1.78	1.20	0.85	0.41	0.19	0.15	9.6	5.7	4.3	24	22	106.4	58.45	1.098
H5 15	439176.047 439174.920	5537264.613 5537187.333	213 128	329.5 357	41	113 0	10 11	36	0.4 0.3	0.64	0.64	16 17	123 144	87 85	1.61	1.19 1.12	0.52	0.41 0.48	0.20 0.20	0.14	9.0 9.9	5.5 5.6	4.0 4.4	19 19	16	91.1 56.3	58.39 58.16	1.101
15 E6	439174.920	5537534.400	128	357 191	1	0 44		36 40	0.3	0.71 2.57	0.83 8.63	17		85 96	1.70 2.26	1.12	0.59	0.48	0.20	0.18		5.0 5.4	4.4	-	18	101.3	58.16 62.44	1.100
F6	439256.500	5537457.460	155	266	45	44 90	19 18	40 52	0.2	1.53	8.63 0.87	19	124 153	96 96	2.20	1.60	1.25 1.40	0.52	0.18	0.14 0.19	9.4 9.6	5.4	4.0	16 23	16 23	101.5	62.44 60.68	1.110 1.104
G6	439255.838	5537379.924	193	200	35	90 67	16	46	0.2	0.82	0.87	13	133	81	1.98	1.50	0.90	0.42	0.20	0.19		5.5	4.4	23	23	119.0	61.18	1.104
H6	439254.010	5537302.641	146	215.5	3	64	15	40	0.5	1.44	2.19	18	124	144	1.90	1.33	1.22	0.52	0.17	0.12		5.6	4.2	19	18	110.0	60.60	1.106
Means			198	269.8	91	129	15	28	0.8	0.99	1.66	21	169	131	1.59		0.56	0.33		0.14		5.1	4.5	25	26	106.1	60.1	1.099
	Information as fol		1/0	-07.0	/-		10	-0	0.0	0.77	1.00	_ <i>_</i> _	107	101	1.07	0.20	0.00	0.00	0.10		2.0	~	1.0			10011	0011	1.077

	Desition Data		- EM29 5.31 5.	alinity Data	Handform	alad Turban Date		
Site	Position Data Easting	Northing	EM38 Soil Sa E.C.	E.C.	Total	pled Tuber Data Medium	Mean	Specific
Sile	(m)	•	Horizontal	Vertical	Yield	Tuber Yield	Tuber	Gravity
	(m)	(m)	(dS/m)	(dS/m)	(t/ha)	(t/ha)	Weight (g)	Gravity
Danth (am)				(0-120)	(1111)	(1/11a)	weight (g)	
Depth (cm)	417902 452	5545100.000	(0-60)		27	21	00.2	1 105
2	417803.452 417802.606	5545198.060	5.0	5.7	27	21 27	99.2 08.4	1.105
3 4	417802.000	5545208.771 5545217.884	0.5 3.7	4.3 4.7	36 34	27	98.4 95.8	1.091 1.086
5	417802.545	5545231.981	3.7	5.4	40	34	122.8	1.094
6	417804.655	5545250.974	3.2	5.0	40	35	114.5	1.103
7 8	417804.179 417806.070	5545258.717 5545284.676	2.7 2.7	4.6 4.7	44 43	31 35	103.5 105.0	1.102 1.100
9 10	417806.324 417807.379	5545311.932	3.8	5.7	30 49	25 40	131.4	1.106
10	417807.379	5545353.228 5545368.950	0.3 0.3	0.1 0.2	49 46	38	101.6 107.9	1.110 1.105
11	417807.700	5545433.224	0.3	0.2	35	28	107.9	1.103
12			4.2	3.9	25	14		1.089
13	417734.776	5545134.595				29	103.0	
14 15	417732.885 417734.047	5545139.708 5545146.255	3.8 2.9	4.1 3.9	34 38	29 30	118.9 108.1	1.100 1.096
16	417735.376	5545160.364 5545160.352	1.8	3.2 3.7	41 39	36	106.0 112.6	1.098 1.093
17	417735.460		2.7		39	32 32		
18 19	417735.746 417735.340	5545177.626	3.2 0.3	4.8 3.8	58 44	32 34	103.8 114.2	1.099 1.100
		5545186.596						
20 21	417735.547 417735.846	5545201.099	4.7	5.3	48	35	91.3	1.099 1.095
21 22	417736.294	5545227.155 5545240.162	2.3 1.8	4.4 3.8	41 40	34 29	101.8 95.8	1.093
22	417737.002	5545292.974	1.6	3.3	39	29	93.8 82.9	1.099
23 24				2.1	36	29		1.097
24 25	417742.783 417741.043	5545420.668 5545425.065	0.6 0.4	2.1	30 31	29 20	105.3 93.3	1.095
25 26	417742.753	5545437.498	0.4	0.8	47	20 37	93.3 105.4	1.100
20 27	417743.677	5545453.048	0.3	0.8	47	36	103.4	1.087
27	417744.943	5545473.627	0.3	1.2	27	18	80.6	1.089
28 29	416599.690	5545133.444	0.3 6.4	6.0	38	31	118.3	
30	416601.295	5545137.559	6.8	6.1	28	20	125.4	1.108 1.108
30	416604.731	5545132.820	6.6	6.1	20	14	1125.4	1.108
31	416611.542	5545132.820	7.0	6.1	18	14	101.4	1.111
32	416624.477	5545146.228	6.2	6.0	20	14	101.4	1.114
33	416628.008	5545148.094	5.0	5.5	34	27	134.4	1.107
35	416633.429	5545150.672	1.8	3.4	50	40	124.9	1.104
35	416637.308	5545159.760	0.5	2.2	56	40 48	124.9	1.092
30	416643.724	5545165.115	2.9	4.2	30	21	148.9	1.098
38	416652.716	5545157.126	2.9 1.9	4.2 3.4	48	40	138.4	1.098
39	416663.907	5545183.050	1.9	2.5	46	40	134.2	1.101
40	416671.818	5545173.875	0.4	1.6	40	41 43	134.2	1.101
40	416677.985	5545170.589	0.4	2.2	49	38	153.3	1.101
41	416684.811	5545190.281	0.0	1.8	40	37	155.5	1.100
42	416689.479	5545190.281	0.4	1.6	55	50	142.5	1.098
43 44	416704.301	5545206.294	0.2	1.0	44	30 37	142.3	1.098
44 45	416704.501	5545218.766	0.3	1.2	44 52	47	147.9	1.1097
45	417011.817	5545102.675	5.9	7.3	10	47	86.2	1.103
40	417009.936	5545087.434	6.1	6.7	43	17	81.7	1.096
47	417009.930	5545067.675	7.8	8.5	43 27	17	117.2	1.090
48	416989.494	5545069.341	2.0	3.2	32	12	60.1	1.097
49 50	416990.820	5545052.866	2.0	2.6	25	13	78.9	1.080
50 51	416990.820	5545040.775	1.5	2.6	25 27	8	37.6	1.078
52	417010.838	5545041.948	5.2	5.5	28	13	37.0 89.6	1.085
52	417010.838	5545023.477	3.2 3.5	3.5 4.6	28 27	13	79.9	1.088
53 54	417012.063	5545009.248	3.5	4.0	6	3	19.9	1.084
55	417012.003	5544984.904	1.6	4.0 3.0	58	48	19.4	1.129
55 56	417011.943	5544966.075	1.0	2.7	38 45	38	172.1	1.097
50 57	417011.943	5544955.561	0.5	1.9	43 51	48	224.0	1.092
58	417011.001	5544939.563	2.4	4.0	36	48 32	179.8	1.089
58 59	417014.215 417020.608	5544939.563 5544932.424	2.4 1.5	4.0 3.4	36 37	32 33	1/9.8 140.2	1.101
59 60	417020.608	5544932.424 5544919.843	0.2	3.4 1.7	49	55 44	140.2	1.103
60 61	417020.434	5544919.845 5544922.446	0.2	1.7	49 58	44 52	157.8	1.091
	417010.730	5544919.278	0.5	1.7	51	46	150.4	1.090
62								

IX. 1999 Vauxhall Grid Sample Data

ESTIMATING POTATO PETIOLE NITRATE NITROGEN USING REMOTE

SENSING TECHNIQUES

Anne M. Smith

Agriculture and Agri-Food Canada, Research Centre 5403 1st Avenue S., Lethbridge, Alberta Tel. (403) 317-2285. Email: smitha@em.agr.ca

Report submitted to:

C. McKenzie

Alberta Agriculture, Food and Rural Development, Crop Diversification Centre

South, Brooks, Alberta.

Introduction

Potato, a high value crop in southern Alberta, requires large amounts of fertilizers, pesticides and irrigation water. With respect to nitrogen (N), a balance between supply and utilization is required to optimize crop growth and economic return as well as minimize environmental impact. Application of excess N results in delayed maturity, reduced tuber set and dry matter yield, and increased incidence of hollow heart. Thus, too much nitrogen leads to a reduction in net returns and potentially ground water contamination due to leaching. Conversely, too little N reduces profitability due to a reduction in yield and an increase in susceptibility to blight (Schaupmeyer 1992). Early detection of N deficiency in crops such as potatoes allows producers an opportunity to more closely match their application rates to the real time N requirements of the crop thereby optimizing returns and alleviating concerns about environmental contamination.

Potato fields are closely monitored during the growing season for the onset of nutrient deficiencies, disease and pests. With respect to nutrients, typically test areas are established in a field and 40 to 50 petioles from representative plants are collected at each sampling date for determination of primarily N but also P and K content. In Alberta in mid-July, the target range for petiole nitrate N for potatoes under irrigation is 1.0 to 2.0%; below 1.0% the plants are considered to be deficient in N. Based upon the petiole sampling, N can be applied through fertigation. This method of petiole sampling provides only limited information regarding spatial variability across the whole field and does not provide information suitable for use with variable rate equipment.

Remote sensing data offers one source of spatial information suitable for use in sitespecific management systems. Digital imaging systems provide the potential to delineate

management zones within a field based upon soil characteristics and the detection of crop stresses both in the short and long term (Brisco et al. 1998, Moran et al. 1997). A number of algorithms have been proposed to measure chlorophyll or N content of plants using remote sensing (Table 1). The close correlation between leaf chlorophyll and N availability suggests that chlorophyll content can be use to characterize N status and vice versa (Filella and Peñuelas 1994). The majority of the algorithms or indices are based upon reflectance in the green (530-600 nm), red (670-680 nm) or so-called 'red-edge' (690-710 nm) normalized to reflectance in the near-infrared (750-900 nm) range of the electromagnetic spectrum. Reflectance at wavelengths above 735 nm is relatively insensitive to chlorophyll or N levels while reflectance at 550 and 690-710 nm is most sensitive. Sensitivity to N stress at 670-680 nm is variable due to the signal being saturated and reflectance reaching a minimum at relatively low chlorophyll levels (Gitelson et al. 1999). The objective within this study was to test, using airborne remote sensing imagery, the suitability of the reported algorithms to estimate petiole-N content in potatoes and examine the spatial information regarding N status across the field.

Materials and Methods

Fields Sites

Two field sites were identified one near Fincastle and the other at Hays, Alberta. The producers used their normal methods for seeding, cultivation, irrigation, pest control and harvesting of the potato crop. The characteristics of the sites and fertilizer applications are given in Table 2.

Petiole Sampling

A sampling grid was set up in each field in the fall of 1998; the grid sampling points were located with differential GPS methods. Petiole samples were collected at each grid sampling point at Fincastle on July 9, July 28 and August 13 and at Hays on July 7, July 30 and August 17, 1999. Within 5 m of each grid sampling point, 45 to 70 petioles were taken from the fourth leaf of representative plants. The tissues were analyzed to determine nitrate N and total N as well as a number of other elements (McKenzie et al. 2002). The N levels in the tissues were compared to sufficiency limits used by various Alberta and USA soils laboratories. The geographic coordinates of the grid points together with their associated petiole nitrate N values were imported into the grid-based graphics program Surfer? (Golden Software Inc, Colorado, USA). The data between the grid points were interpolated using kriging to produce a map delineating petiole nitrate N levels across each of the test fields.

Remote sensing data

On July 28, 1999, Itres acquired digital images over the test fields. The image data were acquired over the spectral range 420-965 nm using a Compact Airborne Spectrographic Imager at 2 and 3-m resolution. The spectral bands in which data were acquired varied with the resolution from 36 to 48 respectively. The image data were radiometrically corrected and geocoded by Itres.

The data were imported into the ENVI? image analysis software package (Research Systems Inc. Colorado, USA) and converted from spectral radiance units (μ W cm⁻² sr⁻¹ nm⁻¹) to surface reflectance (%) using the FLAASH (Fast Line-of-sight

Atmospheric Analysis of Spectral Hypercubes) atmospheric correction model (Anon 2001). The input parameters used in the model are shown in Table 3.

Images of the various chlorophyll/N indices outlined in Table 1 were created using the band math function in the image analysis software. The spatial patterns of the indices across the sites were visually examined and compared to those in the kriged maps derived from the ground based petiole nitrate N samples. The grid sampling points were overlaid on the imagery and the reflectance values under a 3 x 3-pixel window centered over each grid point were extracted for each band and each chlorophyll/N index. The relationship between the various chlorophyll/N indices and the petiole nitrate N values was assessed using correlation and regression analyses.

Results & Discussion

True colour images derived from the 2-m resolution airborne imagery for both the Fincastle and Hays sites are shown in Figure 1. Both the 2 and 3-m resolution images were processed but due to the similarity in the information content only the 2-m data will be discussed. The images show differential "greeness" across the fields, particularly in the Hays field. The spatial patterns tend to correspond to soil texture, particularly in the northern end of the field at Hays and likely results from poorer growth on the coarse textured soils. Consistent with the observation that many of the proposed indices involve reflectance in similar wavebands, the spatial patterns in the images derived for the various indices were similar (Table 1). Only the images showing the spatial variability in the index SR_{550_850} derived from reflectance at 550 and 850 nm are shown (Figures 2 and 3). Visual comparison of the petiole-N maps derived in Surfer? using the grid point

petiole nitrate N data and the index SR_{550_850} shows similarities in the patterns across both fields. Generally, areas of low petiole nitrate N exhibited high values for the SR_{550_850} index. Correlation analysis showed a strong relationship between most of the chlorophyll/N indices and petiole nitrate N for the Fincastle site (Table 4). The strongest relations hips were evident with simple ratios involving either reflectance in the green band (550 nm) or the red-edge (700-710 nm) and the near infrared reflectance (750-850 nm). These observations can be attributed to the greater range of chlorophyll/N content to which reflectance at 550 and 700-710 nm responds. The absorption feature at 660-680 nm saturates at relatively low chlorophyll content and thus relative to 550 or 700-710 nm is insensitive to variation in chlorophyll/N.

At the Hays site, visually there were some similarities between the spatial patterns within the image of the SR_{550_850} index and the kriged map of the ground based sampling. The extent of the N deficient areas in the remote sensing image appeared less than in the kriged map. The image ry may provide a more accurate representation of the spatial variability given that each pixel in the remote sensing image represents information from an area of 2×2 m on the ground while the ground data is an interpolation from grid points at greater than 100 m apart. Quantitative analysis showed only a limited number of indices were significantly related to petiole nitrate N. The strength of the relationship was poor compared to that at the Fincastle site. The lack of a strong relationship may reflect uncertainty in the georeferencing of the airborne imagery and the sampling sites and the heterogeneity of the crop reflectance in the areas selected for sampling. (Deguise et al. 1998).

Conclusions

The results of the study indicated that potato petiole nitrate N could be estimated from remote sensing imagery at one test site but not the other. At the second site, visually the spatial patterns in the remote sensing derived maps for N levels and those derived from ground based plant sampling were similar. Errors in the overlay of petiole sampling points on the remote sensing imagery may account for the lack of a significant quantitative relationship at the second site. Further studies are being conducted to determine the ability to estimate plant N content using remote sensing techniques.

References

Anon. 2001. FLAASH User's Guide. Version 1.0. Research Systems, Boulder CO. 57Pp.

Blackburn G.A. 1998. Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sensing of Environment 66:273-285.

Carter G.A. 1994. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing 15:697-703

Chapelle E.W., M.S. Moon and J.E. McMurtrey III. 1992. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of Environment 39:239-247.

Daughtry C.S.T., C.L. Waltahll, M.S. Kim, E. Brown de Colstoun and J.E. McMurtery III. 2000. Estimating corn leaf chlorophyll concentartion from leaf and canopy reflectance. Remote Sensing of Environment 74:229-239.

Deguise J.C., M. McGovern, H. McNairn and K. Staenz. 1998. Spatial High Resolution Crop Measurements with Airborne Hyperspectral Remote Sensing. 4th International Conference on Precision Agriculture. 19-22 July. Saint Paul, Minnesota. Pp.1603-1608.

Filella J. and J. Peñuelas. 1994. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing 15:1459-1470.

Gamon J.A., J. Peñuelas and C.B. Field. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment 41:35-44.

Gitelson A. and M.N. Merzlyak. 1994. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal Photochemical and Photobiology B.: Biol 22:247-252.

Gitelson A.A. and M.N. Merzlyak. 1996. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology 148:494-500.

Gitelson A.A., C. Buschmann and H.K. Lichtenthaler. 1999. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of chlorophyll contents in plants. Remote Sensing of Environment 69:296-302.

Haboudane D., J.R. Miller, N. Tremblay, P.J. Zarco-Tejada and L. Dextraze. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment 81-416-426.

Leblon B., J. McRobert, V. Vanderbilt and S. Th? riault. 2001. Defining hyperspectral reflectacen ratios for assessing potato crop nitrogen and chlorophyll status. Proceedings 23rd Canadian Symposium on Remote Sensing, August 21-24. Sainte-Foy Qu? bec, Canada. Pp.271-277.

Lichtenthaler H.K., A. Gitelson and M. Lang. 1996. Non-destructive determination of chlorophyll content f leaves of a green and an aurea mutant of tobacco by reflectance measurements. Journal of Plant Physiology 148:483-489.

Merzlyak, M.N., Gitelson, A.A., Chivkunova, O.B. and Y.R. Rakitin. 1999. Nondestructive optical detection of pigment changes during leaf senescence and fruit ripening, Physiologia Plantarum, 106:135-141.

Peñuelas J., J.A. Gamon, A.L. Fredeen, J. Merino and C.B. Field. 1994. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment 48:135-146.

Peñuelas J., I. Filella, P. Floret, F. Munoz and M. Vilajeliu. 1995. Reflectance assessment of mite effects on apple trees. International Journal of Remote Sensing 16:1647-1662.

Rondeaux G., M. Steven and F. Baret. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment 55:95-107.

Schaupmeyer C. 1992. Potato Production Guide. Alberta Agriculture, Food and Rural Development. Agdex 258/20_8 80 pp.

Schepers J.S., T.M. Blackmer, W.W. Wilhelm and M. Resende. 1996. Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. Journal Plant Physiology 148:523-529.

Sims D.A. and J.A. Gamon. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment 81:337-354.

Index	Formula	Citation	CASI bands
Simple ratio			
SR _{800_670}	(R _{800nm} /R _{670nm})		17, 25
SR _{695_430}	(R _{695nm} R _{430nm})	Carter 1994	1, 18
SR ₆₀₅ 760	(R _{605nm} /R _{760nm})	Carter 1994	12, 23
SR ₆₉₅ 760	(R _{695nm} /R _{760nm})	Carter 1994	18, 23
SR _{695_670}	(R _{695nm} /R _{670nm})	Carter 1994	17, 18
SR _{750_705}	(R _{750nm} /R _{705nm})	Gitelson and Merzlyak 1996, Sims and Gamon 2002	19, 22
SR _{750_550}	(R _{750nm} /R _{550nm})	Gitelson and Merzlyak 1996, Lichtenthaler et al. 1996	9, 22
SR _{667_717}	(R _{667nm} /R _{717nm})	Leblon et al. 2001	17, 20
SR _{550_850}	(R _{550nm} /R _{850nm})	Schepers et al. 1996	9, 28
SR _{710_850}	(R _{710nm} /R _{850nm})	Schepers et al. 1996	19, 28
SR _{800_680}	(R _{800nm} /R _{680nm})	Sims and Gamon 2002	17, 25
SR _{735_700}	(R _{735nm} /R _{700nm})	Gitelson and Merzlyak. 1999	19, 21
Pigment specific simple ratio (PSSR) Normalized difference index	(R _{810nm} /R _{676nm})	Blackburn 1998	17, 26
Normalized green difference vegetation index (NGVDI)	(R _{750nm} 拳 R _{550nm})/(R _{750nm} + R _{550nm})	Gitelson et al. 1996	9,22
Photochemical reflectance index (PRI)	(R _{531nm} 🗳 R _{570nm})/(R _{531nm} + R _{570nm})	Gamon et al. 1992	8, 10
Pigment specific normalized difference (PSND)	(R _{810nm} 🗳 R _{676nm})/(R _{810nm} + R _{676nm})	Blackburn 1998	17, 26
Normalized difference index (NDI750_700)	(R750nm 🖨 R700nm)/(R750nm + R700nm)	Gitelson and Merzylak 1994, Sims and Gamon 2002	19, 22
Normalized difference index (NDI _{800 680})	(R _{800nm} 🗳 R _{680nm})/(R _{800nm} + R _{680nm})	Sims and Gamon 2002	17, 25
Normalized pigments chlorophyll ratio index (NPCI)	(R _{680nm} ⁴ R _{430nm})/(R _{680nm} + R _{430nm})	Peñuelas et al. 1994	1, 17
Structure-insensitive pigment index (SIPI) Others	(R _{800nm} ∉ R _{445nm})/(R _{800nm} + R _{680nm})	Peñuelas et al. 1995	2, 17, 25
Modified simple ratio (mSR _{750 445})	(R _{750nm} 🗳 R _{445nm})/(R _{705nm} 🗳 R _{445nm})	Sims and Gamon 2002	2, 19, 22
Modified normalized ratio (mNR _{750 445})	(R750nm 🗳 R705nm)/(R750nm + R705nm 🗳2*R445nm)	Sims and Gamon 2002	2, 19, 22
Optimized soil adjusted vegetation index (OSAVI)	(1 + 0.16)*(R _{800nm} ቆ R _{670nm})/(R _{800nm} + R _{670nm} + 0.16)	Rondeaux et al. 199	17, 25
Modified chlorophyll absorption in reflectance index (MCARI)	[(R _{700nm}	Daughtry et al. 2000	9, 17, 19
Transformed chlorophyll absorption in reflectance index (TCARI)	3*[(R _{700nm} R _{670nm}) (0.2*(R _{700nm} R _{550nm})) *(R _{700nm} /R _{670nm})]	Haboudane et al. 2002	9, 17, 19
Plant senescence reflectance index (PSRI)	(R _{680nm} 🗳 R _{500nm})/(R _{750nm})	Merzlyak et al. 1999	6, 17, 22
Carotenoids	[4.145*(S760nm/ S500nm)*(R500nm/R760nm)]-1.171	Chapelle et al. 1992	5, 23
Chlorophyll b	2.94*[((\$675nm/ \$650nm*\$700nm)*(\$650nm*\$700nm/\$675nm))]+0.378	Chapelle et al. 1992	15, 17, 18
Chlorophyll a	22.735[=(S _{675nm} /S700 _{nm})*(R _{700nm} /R _{675nm})] - 10.407	Chapelle et al. 1992	17, 18

TABLE 3. SITE CHARACTERISTICS

	Fincastle	Hays
Field size (ha)	31	28
Soil type	Chin light loam, fluvial	Aeolian loamy sand
	lacustrine	overlying fine lacustrine till
# of grid sampling points	51	54
Type of irrigation	High pressure corner	Low pressure
Cultivar	Frito-Lay 1625	Snowden
N Fertilizer	Fall 1998 112 kg/ha	Fall 1998 157 kg/ha,
	At hilling 20 kg/ha	At hilling 41 kg/ha
	Fertigation 30 kg/ha	Fertigation 50 kg/ha
P Fertilizer	Fall 1998 39 kg/ha	Fall 1998 59 kg/ha
	Spring 1999 29 kg/ha	Spring 1999 0 kg/ha
K Fertilizer	Fall 1998 56 kg/ha	Fall 1998 56 kg/ha
	Spring 1999 0 kg/ha	Spring 1999 0 kg/ha
Petiole N sampling	July 9, 28 and August 13	July 7, 30 and August 17
Seeded	April	April
Hilled	April	April
Harvested	September 15-17	September 20, 24-25,27

TABLE 4. INPUT PARAMETERS FOR THE FLAASH ATMOSPHERIC CORRECTION MODEL.

Parameter	Input
Latitude/Longitude	49.9867N, 111.8523W
Sensor altitude	2.286 km
Ground elevation	0.786 km
Atmospheric model	Sub-Artic Summer
Aerosol model	Rural
Visibility	40 km

Index	Fincastle	Hays
SIMPLE RATIO		
SR _{800_680}	0.751	NS
SR _{695_430}	-0.734	-0.356
SR _{605_760}	-0.781	NS
SR _{695_760}	-0.748	NS
SR _{695_670}	0.449	-0.318
SR _{750_705}	0.820	NS
SR _{750_550}	0.821	NS
SR _{677_717}	-0.639	NS
SR _{550_850}	-0.832	NS
SR _{710_850}	-0.832	NS
SR _{735_700}	0.821	NS
PSSR	0.764	NS
NORMALIZED DIFFERENCE INDEX		
NGVDI	0.809	NS
PRI	0.770	NS
PSND	0.706	NS
NDI750_700	0.809	NS
NDI750_705	0.696	NS
NDI _{800_680}	0.707	NS
SIPI	-0.660	NS
OTHER		
mSR _{750_705}	0.821	0.326
mNR _{750_705}	0.813	0.308
OSAVI	0.722	NS
MCARI	0.445	-0.298
TCARI	-0.800	-0.317
PSRI	-0.597	
Carotenoids	0.746	NS
Chlorophyll a	-0.448	0.313
Chlorophyll b	-0.674	NS
PSRI	-0.597	NS
NPCI	-0.702	NS
# OF OBSERVATIONS	N=51	N=54

TABLE 5. RELATIONSHIP BETWEEN THE VARIOUS PROPOSED INDICES AND PETIOLENITRATE N SAMPLES

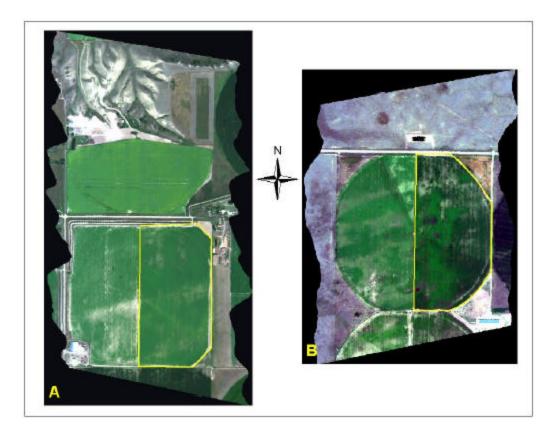


FIGURE 1. TRUE COLOUR COMPOSITE IMAGES ACQUIRED JULY 28, 1999 OF THE FINCASTLE (A) AND HAYS (B) SITES.

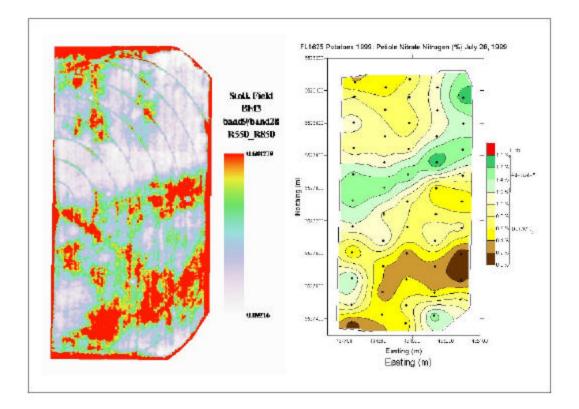


FIGURE 2. FINCASTLE SITE: $SR_{\rm 550_850}$ index image and petiole-N maps derived from ground-based sampling

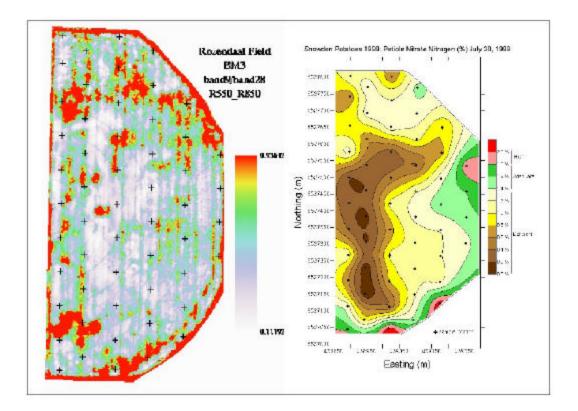


FIGURE 3 HAYS SITE: SR_{550_850} INDEX IMAGE AND PETIOLE-N MAPS DERIVED FROM GROUND-BASED SAMPLING.

Research Team Information

a) Research Team Leader:						
Title: Dr. F	First Name: R. Colin			Last Name: McKenzie		
Position: Research Scientist, Soil and Water Agronomy (deceased)						
Organization/Institution: Crop Divers	ification Centre	South				
Department: Alberta Agriculture, Food and Rural Development						
Address:			City:		Prov./State:	
Postal Code/Zip:	E	E-mail Ac	ldress:			
Phone Number:	F	ax Num	ber:			
Past experience relevant to project:						
 Determining nutrient content The influence of compost and 	d phosphorus f	ertilizer	on disease	•	,	
 Response of irrigated potatoes to phosphorus fertilizer and compost (1999-2001). Site specific management of irrigated potatoes (1996-1999). 						
5. Salinity tolerance of forage a						
6. Phosphorus and potassium r	equirement of					
•	Degrees /Certificates /Diplomas: Institution Received From:					
Ph.D., The effect of subsoil acidity on root Univ. of Alberta (1970-1973)						
development and crop growth of several crops. MSc., The effect of coal humic acids on soil Univ. of Alberta (1968-1970)						
structure and as a slow release source of nitrogen.						
BSA in Agriculture Univ. of Saskatchewan						
Publications and Patents:						
# of Refereed papers: 15Conference proceedings: 16Relevant Patents obtained: 0Other relevant citations: 3 Chapters				ers in Books		
Other evidence of productivity during past 6 years:						
- Invited speaker at International Drainage Conference in India (Feb. 2000).						
- External examiner for 2 Ph.D. graduate students (2000-2002).						
 Provided a course on measurement of salinity for Pakistan engineers and soil specialist (2001- 2002). 						

b) Research Team Membe	rs	
Name	Institution	
1. R. C. McKenzie	CDC South, AAFRD	
2. C.A. Shaupmeyer	AAFRD	
3. M. Green	AAFRD	
4. T.W. Goddard	AAFRD	
5. D.C. Penney	AAFRD	

Title: Ms		being collected is subject to the provisions of the Freedow First Name: Shelley A.			Last Name: Woods	
Position: Soil and				1		
Organization/Institution: Crop Diversification Centre South Department: AAFRD					:: AAFRD	
Mailing Address: S	SS #4 City	4 City: Brooks		Prov: AB	Postal Code: T1R 1E6	
E-mail Address: S	helley.A.Woods	@gov.ab.ca			•	
Phone Number: (4	03)362-1352	Fax N	umber: (40	3)362-1311		
Past experience re	elevant to proje	ct: (Point form, c	oncise.)			
and present - Phosphorus - Precision Fa - Precision Fa - Salinity Tole	ation of results. and Compost of arming of Potato arming of Dry Be arance of Forage	n Potatoes 2000-	2001 95, 1997-19 s (1991-199	998	ysis, report writing	
Degrees /Certifica Ph.D. (Soil Physics Master of Environm Bachelor of Science) - <u>In Progress</u> ental Design (Er		University University	n Received F of Saskatche of Calgary of Alberta	-	
Publications and	Patents:		· · · · ·			
# of Refereed pape		Conference pr				
Relevant Patents ol	otained: 0	Other relevant				
Other evidence of	productivity du	ring past 6 year	s. (Point fo	rm concise)	he Web articles	
 managed the study successfully completed pervisor gave semination presented pervisor won second 	e Alberta compo solicited Potato program reviews ars to a variety o apers, posters a		I agricultura rta for subst inual report ity and indu provincial, t the 2002 A	al greenhouse tantial funding in the absend stry groups national and i Alberta Soil So	ce of my nternational sience Workshop	

The personal information being collected is subject to the provisions of the Freedom of Information and Protection of Privacy Act.							
Title: Mr.	: Mr. First Name: Clive A.		Last Name: Schaupmeyer				
Position: Potato Specialist (retire	ed)						
Organization/Institution:		Department: AAFRD					
Mailing Address: 2207 – 16 Ave	Prov	V:AB	Postal Code: T1M 1N7				
E-mail Address: clives@shaw.c	a						
Phone Number: (403)345-6457	Fax Nur	nber: n/a					
Past experience relevant to pro	oject:						
1. Agronomic research proje	ects aimed at improving	g potato plant	stands, pop	pulation, plant performance,			
quality and yields.	quality and yields.						
2. Effects of in-row spacing	on yield and size distri	bution of pote	atoes (1993-	·1996).			
3. Development of optimum management profiles for new potato varieties (1995-1998).							
Degrees /Certificates /Diplomas: Institution Received From:							
M.Sc. (Extension Education) Un			Univ. of Guelph (1976)				
B.Sc. (Soils/Horticulture) Univ. of Alberta (1968)							
Publications and Patents:							
# of Refereed papers: 10	Conference proceedings: Several						
Relevant Patents obtained: 0	Other relevant citations:						
Other evidence of productivity during past 6 years:							

The personal information being collected is subject to the provisions of the Freedom of Information and Protection of Privacy Act.						
Title: Mr.	First Name: Murray			Last Name: Green		
Position: Farm Machine Engineer (retired)						
Organization/Institution:	Depa	Department: AAFRD				
Mailing Address:	City:	Prov	/:	Postal Code:		
E-mail Address: murray.green	@shaw.ca					
Phone Number:	Fax N	umber:				
Past experience relevant to pr	oject:					
1. Variable rate fertilizer ap	1. Variable rate fertilizer application system to control the input of fertilizer based on prescribed					
requirements (1994-1996						
2. Precision farming systems to maximize profits and miniize environmental impacts (1993-1996).						
3. Site-specific management of potatoes (1996-1999).						
4. Yield mapping of irrigated edible beans (1997-1998).						
Degrees /Certificates /Diploma	IS:	Institution I	Received From	:		
B.Sc.Eng. (Agricultural Engineering) Univ. of Saskatchewan (1967)						
Publications and Patents:						
# of Refereed papers: Conference proceedings:						
Relevant Patents obtained: 0 Other relevant citations:						
Other evidence of productivity during past 6 years:						

The personal information being collected is subject to the provisions of the Freedom of Information and Protection of Privacy Act.

First Name: Thomas	N	I ast Na	me: Goddard			
Position: Soil Conservation Specialist Organization/Institution: AAFRD Department: Conservation & Development						
Mailing Address: 7000-113 St. City: Edmonton Prov: AB Postal Code: T6H 5T6 E-mail Address: Tom.Goddard@gov.ab.ca From Goddard@gov.ab.ca From Goddard@gov.ab.ca						
Fax Numbe	er: (780) 42	2-0474				
on of precision farming te	echnologies	for canol	a production and			
		ns (1996-	1999).			
U U U U	,					
0	niv. of Albei	ta (1979)				
	onforonco r	vrocoodin	ac: 45			
			5. T			
iuning past o years:						
 Development of Scientifically Defensible Estimates of N₂O Emissions from Agricultural Ecosystems in Canada (CCAF, 00-03), Grant, Juma, Goddard, Kryzanowski, Zhang Solberg, Pattey. Assessing the Nitrous Oxide Tradeoffs to Carbon Sequestering Management Practices (CCAF, 00- 01) Lemke, Desjardins, Keng, Kharabata, Smith, Goddard, Ellert, Monreal, Drury, Rochette, Pattey. Landscape dynamics and crop-soil model verification. (ARI, AESA, 99-01) Kryzanowski, Grant, Goddard. Impacts of Cropping Systems to Climate Change and Adaptation Strategies for Agriculture in the Prairie Regions. (PARC, 00-01) Manunta, Goddard, Cannon. Phosphorus mobility in soil landscapes: a site-specific approach. (CABIF, 99-02). Li, Chang, Amrani, Goddard, Heaney, Olson, Zhang, Feng. Soil landscape management study crop yields. (MII, 01) Nolan, Lohstraeter, Coen, Brierley, Pettapiece, Goddard Carbon sequestration and greenhouse gas flux in selected Alberta catenas containing wetlands (IWWR 02-07) Goddard/Fuller, Kryzanowski, Brierley, Zhang. Emissions of N₂O from Cereal-Pea and Cereal-Lentil rotations in western Canada (NRCan 01-02). Lemke, Goddard, Selles. Soil Variability for Agronomic and Environmental Crop Production - SVAECP (boardmember) Advanced Research (CIAR). 						
	ialist City: Edmonton gov.ab.ca ject: on of precision farming and mode of agronomic practice. (1 ze yields and minimize e : In U during past 6 years: Defensible Estimates of 00-03), Grant, Juma, Go radeoffs to Carbon Seque Kharabata, Smith, Godda soil model verification. (a) to Climate Change and A 1) Manunta, Goddard, Ca ndscapes: a site-specific a son, Zhang, Feng. udy crop yields. (MII, 01 nhouse gas flux in selecter r, Kryzanowski, Brierley -Pea and Cereal-Lentil ro e and Environmental Crop - Land Information System	Ialist Departme City: Edmonton Prov: AB gov.ab.ca Fax Number: (780) 42 ject: Fax Number: (780) 42 ject: on of precision farming technologies acision farming and model applicatio of agronomic practice. (1995-96) ze yields and minimize environment Institution R Univ. of Alber Univ. of Alber Univ. of Alber Conference p Other relevar Other relevar during past 6 years: Defensible Estimates of N2O Emissi Defensible Estimates of N2O Emissi 00-03), Grant, Juma, Goddard, Kry. radeoffs to Carbon Sequestering Ma Kharabata, Smith, Goddard, Ellert, N soil model verification. (ARI, AESA Soil model verification. (ARI, AESA to Climate Change and Adaptation S 1) Manunta, Goddard, Cannon. adscapes: a site-specific approach. (Con, Zhang, Feng. 100 ady crop yields. (MII, 01) Nolan, Lo Soil model verial crop Production nhouse gas flux in selected Alberta c cr, Kryzanowski, Brierley, Zhang. -Pea and Cereal-Lentil rotations in w cand Environmental Crop Production - Land Information Systems program Systems progran	Image: Additional and the second s			

The personal information being collected is subject to the provisions of the Freedom of Information and Protection of Privacy Act.					
Title: Mr. F	First Name: Douglas C.		Last Name: Penney		
Position: Head, Soil Fertility and Age	ronomy Section (r	etired)			
Organization/Institution:	Depa	Department: AAFRD			
Mailing Address:	City:	Prov		Postal Code:	
E-mail Address: dpenney@mail.telu	isvelocity.net	·			
Phone Number:	Fax Nu	mber:			
Past experience relevant to project	:t:				
1. Precision farming technologie	es for canola produ	uction and rese	arch (1996).		
2. Precision farming systems to			nvironmental i	mpacts (1996).	
3. Precision farming management systems for potatoes (1995).					
4. Optimal seedplaced fertilizer for airseeded crops (1994).					
Degrees /Certificates /Diplomas: Institution Received From:					
M.Sc. (Soil Fertility) Univ. of Alberta (1973)					
B.Sc. (Soil Science) Univ. of Alberta (1962)					
Publications and Patents:					
# of Refereed papers: Conference proceedings:					
Relevant Patents obtained: 0 Other relevant citations:					
Other evidence of productivity during past 6 years:					